cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354800 Cardinality of the set of ordered pairs (m(lambda),f(lambda)), where lambda ranges over all partitions of n and m gives the infimum and f gives the sum of the squares of the argument.

This page as a plain text file.
%I A354800 #24 Jul 06 2022 13:35:23
%S A354800 1,1,2,3,5,7,11,13,20,26,33,41,55,63,77,93,111,129,160,180,209,240,
%T A354800 280,312,356,397,453,498,560,614,680,758,831,901,994,1087,1179,1280,
%U A354800 1389,1495,1629,1745,1868,2022,2159,2296,2485,2650,2809,2991,3181,3377,3600
%N A354800 Cardinality of the set of ordered pairs (m(lambda),f(lambda)), where lambda ranges over all partitions of n and m gives the infimum and f gives the sum of the squares of the argument.
%H A354800 Alois P. Heinz, <a href="/A354800/b354800.txt">Table of n, a(n) for n = 0..700</a>
%H A354800 Wikipedia, <a href="https://en.wikipedia.org/wiki/Infimum_and_supremum#Infima_and_suprema_of_real_numbers">Infima and suprema of real numbers</a>
%H A354800 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a>
%e A354800 a(0) = 1 = |{(infinity,0)}|.
%e A354800 a(1) = 1 = |{(1,1)}|.
%e A354800 a(2) = 2 = |{(1,2), (2,4)}|.
%e A354800 a(3) = 3 = |{(1,3), (1,5), (3,9)}|.
%e A354800 a(4) = 5 = |{(1,4), (1,6), (1,10), (2,8), (4,16)}|.
%e A354800 a(5) = 7 = |{(1,5), (1,7), (1,9), (1,11), (1,17), (2,13), (5,25)}|.
%p A354800 a:= n-> nops({map(l-> [min(l), add(i^2, i=l)], combinat[partition](n))[]}):
%p A354800 seq(a(n), n=0..40);
%p A354800 # second Maple program:
%p A354800 b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(n<i,
%p A354800       {}, {b(n, i+1)[], map(x-> x+i^2, b(n-i, i))[]}))
%p A354800     end:
%p A354800 a:= n-> add(nops(b(n-i, i)), i=signum(n)..n):
%p A354800 seq(a(n), n=0..60);
%t A354800 b[n_, i_] := b[n, i] = If[n == 0, {0}, If[n < i, {}, Union@ Flatten@ {b[n, i + 1], # + i^2& /@ b[n - i, i]}]];
%t A354800 a[n_] :=  Sum[Length[b[n - i, i]], {i, Sign[n], n}];
%t A354800 Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, Jul 06 2022, after _Alois P. Heinz_ *)
%Y A354800 Cf. A069999 (lower bound), A354468 (the same for supremum).
%K A354800 nonn
%O A354800 0,3
%A A354800 _Alois P. Heinz_, Jun 06 2022