cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354802 Irregular triangle read by rows where T(n,k) is the number of independent sets of size k in the n-hypercube graph.

This page as a plain text file.
%I A354802 #39 Jun 27 2025 22:01:15
%S A354802 1,1,1,2,1,4,2,1,8,16,8,2,1,16,88,208,228,128,56,16,2,1,32,416,2880,
%T A354802 11760,29856,48960,54304,44240,29920,17952,9088,3672,1120,240,32,2,1,
%U A354802 64,1824,30720,342400,2682432,15328064,65515840,213464240,538811200,1070860384,1708551424,2245780976,2517976640,2509047680
%N A354802 Irregular triangle read by rows where T(n,k) is the number of independent sets of size k in the n-hypercube graph.
%C A354802 The independence number alpha(G) of a graph is the cardinality of the largest independent vertex set. The n-hypercube has alpha(G) = 1 for n = 0 and alpha(G) = 2^(n-1) for n >= 1. The independence polynomial for the n-hypercube is given by Sum_{k=0..alpha(G)} T(n,k)*t^k.
%C A354802 Since 0 <= k <= alpha(G), row n has length 2^(n-1) + 1 except for n = 0 which has length 2.
%C A354802 Jenssen, Perkins and Potukuchi proved asymptotics for independent sets of given size.
%H A354802 Christopher Flippen, <a href="/A354802/b354802.txt">Table of n, a(n) for n = 0..71</a>
%H A354802 M. Jenssen, W. Perkins and A. Potukuchi, <a href="https://doi.org/10.1017/S0963548321000559">Independent sets of a given size and structure in the hypercube</a>, Combinatorics, Probability and Computing, 2022, 1-19; see also <a href="https://arxiv.org/abs/2106.09709">arXiv:2106.09709</a> [math.CO], 2021-2022.
%H A354802 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HypercubeGraph.html">Hypercube graph</a>
%H A354802 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IndependencePolynomial.html">Independence polynomial</a>
%e A354802 Triangle begins:
%e A354802   n=0: 1, 1
%e A354802   n=1: 1, 2
%e A354802   n=2: 1, 4, 2
%e A354802   n=3: 1, 8, 16, 8, 2
%e A354802   n=4: 1, 16, 88, 208, 228, 128, 56, 16, 2
%e A354802 The 3-hypercube graph has independence polynomial 1 + 8*t + 16*t^2 + 8*t^3 + 2*t^4.
%o A354802 (Sage) from sage.graphs.independent_sets import IndependentSets
%o A354802 def row(n):
%o A354802     if n == 0:
%o A354802         g = graphs.CompleteGraph(1)
%o A354802         setCounts = [0, 0]
%o A354802     else:
%o A354802         g = graphs.CubeGraph(n)
%o A354802         setCounts = [0] * (pow(2,n - 1) + 1)
%o A354802     for Iset in IndependentSets(g):
%o A354802         setCounts[len(Iset)] += 1
%o A354802     return setCounts
%o A354802 # _Christopher Flippen_ and Scott Taylor, Jun 06 2022
%Y A354802 Cf. A027624 (row sums), A354082 (alternating sums).
%K A354802 nonn,tabf
%O A354802 0,4
%A A354802 _Christopher Flippen_, Jun 06 2022