cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354829 Numbers k such that 2^k + 3^k + 6 is prime.

This page as a plain text file.
%I A354829 #52 Jun 01 2024 08:45:13
%S A354829 1,2,3,4,5,8,9,15,18,23,24,33,34,35,44,63,88,89,120,220,228,229,570,
%T A354829 1095,1863,2094,2718,3598,4658,6056,8819,9485,11220,23656,28762,35664,
%U A354829 36544,39779,46868,50098,58853
%N A354829 Numbers k such that 2^k + 3^k + 6 is prime.
%C A354829 a(34) > 17000.
%C A354829 a(36) > 30000. - _Jon E. Schoenfield_, Jun 14 2022
%e A354829 For k=1 we obtain f(1) = 2^1 + 3^1 + 6 = 11 which is a prime.
%t A354829 Select[Range[1, 1000], PrimeQ[2^# + 3^# + 6] &]
%o A354829 (Python)
%o A354829 from sympy import isprime
%o A354829 from itertools import count, islice
%o A354829 def agen(): yield from (k for k in count(1) if isprime(2**k+3**k+6))
%o A354829 print(list(islice(agen(), 24))) # _Michael S. Branicky_, Jun 07 2022
%Y A354829 Cf. A353102.
%K A354829 nonn,more,hard
%O A354829 1,2
%A A354829 _Hemjyoti Nath_, Jun 07 2022
%E A354829 a(34) from _Jon E. Schoenfield_, Jun 11 2022
%E A354829 a(35) from _Jon E. Schoenfield_, Jun 13 2022
%E A354829 a(36)-a(38) from _Michael S. Branicky_, Mar 14 2023
%E A354829 a(39)-a(41) from _Michael S. Branicky_, Jun 01 2024