cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354831 Primes of the form 3^k + 5^k + 7^k + 11^k + 13^k.

This page as a plain text file.
%I A354831 #17 Jul 22 2022 10:38:37
%S A354831 5,373,46309,6732373,26450599458469,4317810550653973,
%T A354831 15647143198792684919908583741989,
%U A354831 6864681654384231304317569259724531213945845885866391974437116993829,5599548608682504162062596274137068329320798013420534505888549721133699842789
%N A354831 Primes of the form 3^k + 5^k + 7^k + 11^k + 13^k.
%e A354831 3^2 + 5^2 + 7^2 + 11^2 + 13^2 = 373, which is a prime.
%e A354831 3^4 + 5^4 + 7^4 + 11^4 + 13^4 = 46309, which is a prime.
%t A354831 Select[Table[3^n + 5^n + 7^n + 11^n + 13^n,{n,0,1000}],PrimeQ]
%o A354831 (Python)
%o A354831 from sympy import isprime
%o A354831 from itertools import count, islice
%o A354831 def agen(): yield from (p for p in (3**k + 5**k + 7**k + 11**k + 13**k for k in count(0)) if isprime(p))
%o A354831 print(list(islice(agen(), 9))) # _Michael S. Branicky_, Jun 07 2022
%Y A354831 A352393 gives the corresponding exponents.
%Y A354831 Cf. A166241.
%K A354831 nonn
%O A354831 1,1
%A A354831 _Hemjyoti Nath_, Jun 07 2022