cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354848 a(n) = (n-1)! * Sum_{d|n} d^(n/d + 1).

This page as a plain text file.
%I A354848 #13 Jun 08 2022 14:23:45
%S A354848 1,5,20,150,624,9600,36000,811440,6572160,105235200,442713600,
%T A354848 39437798400,81430272000,4956708556800,137741700096000,
%U A354848 3014189418240000,6067609067520000,1977977787641856000,2317659281473536000,1297953221362237440000
%N A354848 a(n) = (n-1)! * Sum_{d|n} d^(n/d + 1).
%F A354848 a(n) = (n-1)! * A078308(n).
%F A354848 E.g.f.: -Sum_{k>0} log(1 - k * x^k).
%F A354848 If p is prime, a(p) = (p-1)! + p * p!.
%t A354848 a[n_] := (n - 1)! * DivisorSum[n, #^(n/# + 1) &]; Array[a, 20] (* _Amiram Eldar_, Jun 08 2022 *)
%o A354848 (PARI) a(n) = (n-1)!*sumdiv(n, d, d^(n/d+1));
%o A354848 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, log(1-k*x^k))))
%Y A354848 Cf. A038048, A078308, A354849, A354851.
%K A354848 nonn
%O A354848 1,2
%A A354848 _Seiichi Manyama_, Jun 08 2022