cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354849 a(n) = (n-1)! * Sum_{d|n} d^(n/d) / (d-1)!.

This page as a plain text file.
%I A354849 #10 Jun 08 2022 15:39:22
%S A354849 1,3,5,34,29,1626,727,99128,584649,12353050,3628811,4648976652,
%T A354849 479001613,803709466574,11133394272015,391883024332816,20922789888017,
%U A354849 312756670075449618,6402373705728019,148614866400768768020,2663970255433783296021
%N A354849 a(n) = (n-1)! * Sum_{d|n} d^(n/d) / (d-1)!.
%F A354849 E.g.f.: -Sum_{k>0} log(1 - k * x^k)/k!.
%F A354849 If p is prime, a(p) = p + (p-1)!.
%t A354849 a[n_] := (n - 1)! * DivisorSum[n, #^(n/#)/(# - 1)! &]; Array[a, 20] (* _Amiram Eldar_, Jun 08 2022 *)
%o A354849 (PARI) a(n) = (n-1)!*sumdiv(n, d, d^(n/d)/(d-1)!);
%o A354849 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, log(1-k*x^k)/k!)))
%Y A354849 Cf. A087906.
%K A354849 nonn
%O A354849 1,2
%A A354849 _Seiichi Manyama_, Jun 08 2022