A354853 a(1) = 4, a(2) = 9; let i = a(n-2) and j = a(n-1); a(n+1) = k such that (j, k) = 1 and (i, k) = m > 1 and only one of either omega(i) or omega(k) exceed omega(m), where omega = A001221, and neither i | k nor k | i.
4, 9, 10, 21, 8, 27, 14, 15, 16, 25, 6, 35, 32, 49, 12, 77, 30, 121, 18, 55, 42, 125, 24, 65, 64, 169, 20, 39, 70, 81, 28, 33, 128, 243, 22, 45, 256, 105, 26, 63, 512, 231, 34, 99, 289, 66, 85, 36, 625, 78, 95, 48, 361, 60, 133, 40, 343, 90, 91, 50, 2197, 110
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Annotated log-log scatterplot of a(n), n = 1..10^4, with records in red, local minima in blue, highlighting composite prime powers in magenta, squarefree semiprimes in gold, and other squarefree numbers in green.
Programs
-
Mathematica
nn = 120; s = {4, 9}; state = {3, 7}; u = 4; c[] = 0; p[] = 2; p[2] = p[3] = 3; f[j_, k_] := Which[j == k, 5, GCD[j, k] == 1, 0, True, 1 + FromDigits[Map[Which[Mod[##] == 0, 1, PowerMod[#1, #2, #2] == 0, 2, True, 0] & @@ # &, Permutations[{k, j}]], 3]]; Array[Set[{a[#], c[s[[#]]]}, {s[[#]], #}] &, Length[s]]; While[Nand[c[u] == 0, CompositeQ[u]], u++]; Set[{i, j}, s[[-2 ;; -1]]]; Do[k = u; If[PrimeNu[i] == PrimeOmega[i] == 2, k = Min[Map[#^p[#] &, FactorInteger[i][[All, 1]]]], While[Nand[c[k] == 0, MemberQ[state, f[i, k]], CoprimeQ[j, k]], k++]]; Set[{a[n], c[k], i, j}, {k, n, j, k}]; If[PrimePowerQ@ k, p[FactorInteger[k][[1, 1]]]++]; If[k == u, While[Nand[c[u] == 0, CompositeQ[u]], u++]], {n, Length[s] + 1, nn}]; Array[a, nn]
Comments