This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354873 #9 Jun 12 2022 22:53:26 %S A354873 1,1,2,1,7,1,4,3,11,1,5,1,3,19,8,1,33,1,32,13,7,1,52,5,25,9,22,1,53,1, %T A354873 16,37,31,41,14,1,35,11,14,1,73,1,64,87,41,1,64,7,85,55,19,1,135,29, %U A354873 116,31,49,1,136,1,53,15,32,23,107,1,32,73,117,1,204,1,61,35,54,79,127,1,208,27,67,1,47,43,71,22 %N A354873 a(n) = A258851(n) / gcd(A056239(n), A258851(n)). %C A354873 Denominator of fraction A056239(n) / A258851(n). %H A354873 Antti Karttunen, <a href="/A354873/b354873.txt">Table of n, a(n) for n = 2..16384</a> %H A354873 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %F A354873 a(n) = A258851(n) / A354871(n) = A258851(n) / gcd(A056239(n), A258851(n)). %o A354873 (PARI) %o A354873 A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); } %o A354873 A258851(n) = (n*sum(i=1, #n=factor(n)~, n[2, i]*primepi(n[1, i])/n[1, i])); \\ From A258851 %o A354873 A354873(n) = { my(u=A258851(n)); (u/gcd(u, A056239(n))); }; %o A354873 \\ Or: %o A354873 A354873(n) = denominator(A056239(n)/A258851(n)); %Y A354873 Cf. A056239, A258851, A278510, A354871, A354872 (numerators). %K A354873 nonn,frac %O A354873 2,3 %A A354873 _Antti Karttunen_, Jun 11 2022