A354882 a(n) is the smallest number k that is divisible by all numbers d with d < p = prime(n), and such that all of k+1, k-1, k+p, k-p are prime.
12, 60, 93240, 2383920, 298378080, 5133688560, 73329656400, 2168462696400, 1215784751781600, 150901712773812000, 133573286426580000, 657837749787992373600, 10597036678652724300000, 2761248653283183065402400, 2053281233421697855815439200
Offset: 3
Keywords
Examples
a(3): The 3rd prime is 5. The smallest number divisible by all d < 5 is 12. Since 12 - 1 = 11, 12 + 1 = 13, 12 + 5 = 17, 12 - 5 = 7 are all prime, a(3) = 12. a(5): The 5th prime is 11. The smallest number divisible by all d < 11 is 2520. However, 2520 - 1 = 2519 is not prime. The smallest number satisfying all conditions is 93240, since 93240 - 1, 93240 + 1, 93240 + 11, 93240 - 11 are all prime and 93240 is divisible by all d < 11. Thus, a(5) = 93240.
Links
- Florian Baur, Table of n, a(n) for n = 3..200
- Charles Kusniec, An idea for a new class of some numbers, mersenneforum.org
Programs
-
PARI
A354882(n) = { my(s = 1, p = prime(n), c = lcm([1..p-1])); while(!(isprime(s*c+1) & isprime(s*c-1) & isprime(s*c+p) & isprime(s*c-p)), s++); return(s*c)} \\ Florian Baur, Jul 17 2023
Formula
a(n) = m(n) * A099795(n). Specifically, m(3) = m(4) = 1. For all other n < 201, 25 < m(n) < 333054037 and m(n) cannot have prime(n) as a factor. - Florian Baur, Jul 12 2023
Comments