cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354903 Lexicographically earliest infinite sequence of distinct positive integers such that the number of divisors of a(n+1) is prime to a(n).

This page as a plain text file.
%I A354903 #31 Jul 11 2025 18:40:20
%S A354903 1,2,4,9,3,5,6,16,25,7,8,36,64,49,10,100,121,11,12,81,13,14,144,625,
%T A354903 15,17,18,729,19,20,169,21,22,196,225,23,24,1024,256,289,26,324,1296,
%U A354903 2401,27,29,28,361,30,4096,400,441,31,32,484,529,33,34,576,5184
%N A354903 Lexicographically earliest infinite sequence of distinct positive integers such that the number of divisors of a(n+1) is prime to a(n).
%C A354903 1,2 are the earliest consecutive pair of numbers satisfying the definition, therefore the sequence begins with a(1)=1, a(2)=2.
%C A354903 The sequence is infinite since there is always a number k prime to a(n), and the smallest number not yet used which has k divisors could be a(n+1), unless there is a smaller number with the same property.
%C A354903 All record terms are squares, though not in ascending order (64 occurs before 49, 100 before 81, etc.).
%C A354903 Conjectured to be a permutation of the positive integers in which primes appear in natural order.
%H A354903 Michael De Vlieger, <a href="/A354903/b354903.txt">Table of n, a(n) for n = 1..16384</a> first 1237 terms from Rémy Sigrist.
%H A354903 Michael De Vlieger, <a href="/A354903/a354903_1.txt">Mathematica code</a>.
%H A354903 Rémy Sigrist, <a href="/A354903/a354903.txt">C program</a>
%e A354903 a(7)=6 and 16 is the smallest number which has not already occurred whose number of divisors (5) is prime to 6, therefore a(8)=16.
%o A354903 (Python)
%o A354903 from math import gcd
%o A354903 from sympy import divisor_count
%o A354903 from itertools import count, islice
%o A354903 def agen(): # generator of terms
%o A354903     aset, k, mink = {1}, 1, 2; yield 1
%o A354903     for n in count(2):
%o A354903         an, k = k, mink
%o A354903         while k in aset or not gcd(an, divisor_count(k)) == 1: k += 1
%o A354903         aset.add(k); yield k
%o A354903         while mink in aset: mink += 1
%o A354903 print(list(islice(agen(), 60))) # _Michael S. Branicky_, Jun 11 2022
%o A354903 (PARI) lista(nn) = my(va = vector(nn)); va[1] = 1; for (n=2, nn, my(k=1); while ((gcd(va[n-1], numdiv(k)) != 1) || #select(x->(x==k), va), k++); va[n] = k;); va; \\ _Michel Marcus_, Jun 11 2022
%o A354903 (C) // See Links section.
%Y A354903 Cf. A000005, A005179, A000290, A350150, A355269.
%K A354903 nonn
%O A354903 1,2
%A A354903 _David James Sycamore_, Jun 11 2022
%E A354903 a(15) and beyond from _Michael S. Branicky_, Jun 11 2022