This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354905 #14 Jun 22 2022 20:43:14 %S A354905 3,0,2,8,32,68,130,290,274,580,520,1298,2080,1096,2082,4168,2178,4164, %T A354905 4386,35137,8328,8786,10274,8772,16712,20562,8712,16658,33320,41554, %U A354905 33288,82210,34856,66628,33312,66642,34850,69704,140306,133448,69714,74308,133154 %N A354905 First position of n in A354578, where A354578(k) is the number of integer compositions whose run-sums constitute the k-th composition in standard order (graded reverse-lexicographic, A066099). %C A354905 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %C A354905 Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). %e A354905 The terms and their corresponding compositions begin: %e A354905 3: (1,1) %e A354905 0: () %e A354905 2: (2) %e A354905 8: (4) %e A354905 32: (6) %e A354905 68: (4,3) %e A354905 130: (6,2) %e A354905 290: (3,4,2) %e A354905 274: (4,3,2) %e A354905 580: (3,4,3) %e A354905 520: (6,4) %e A354905 1298: (2,4,3,2) %e A354905 The inverse run-sum compositions for n = 2, 8, 32, 68, 130, 290: %e A354905 (2) (4) (6) (43) (62) (342) %e A354905 (11) (22) (33) (223) (332) (3411) %e A354905 (1111) (222) (4111) (611) (11142) %e A354905 (111111) (11113) (3311) (32211) %e A354905 (22111) (22211) (111411) %e A354905 (1111112) (311112) %e A354905 (1112211) %t A354905 nn=1000; %t A354905 stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A354905 antirunQ[y_]:=Length[Split[y]]==Length[y]; %t A354905 q=Table[Length[Select[Tuples[Divisors/@stc[n]],antirunQ]],{n,0,nn}]; %t A354905 w=Last[Select[Table[Take[q+1,i],{i,nn}],Union[#]==Range[Max@@#]&]-1]; %t A354905 Table[Position[w,k][[1,1]]-1,{k,0,Max@@w}] %Y A354905 The standard compositions used here are A066099, run-sums A353847/A353932. %Y A354905 This is the position of the first appearance of n in A354578. %Y A354905 A011782 counts compositions. %Y A354905 A003242 counts anti-run compositions, ranked by A333489. %Y A354905 A005811 counts runs in binary expansion. %Y A354905 A353838 ranks partitions with all distinct run-sums, counted by A353837. %Y A354905 A353851 counts compositions with all equal run-sums, ranked by A353848. %Y A354905 A353852 ranks compositions with all distinct run-sums, counted by A353850. %Y A354905 A353853-A353859 pertain to composition run-sum trajectory. %Y A354905 A354904 lists positions of zeros in A354578, complement A354912. %Y A354905 A354908 ranks collapsible compositions, counted by A353860. %Y A354905 Cf. A000005, A029837, A124767, A238279/A333755, A274174, A333381, A353832, A353849, A353863, A354584. %K A354905 nonn %O A354905 0,1 %A A354905 _Gus Wiseman_, Jun 21 2022