This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354910 #10 Jun 22 2022 09:27:28 %S A354910 1,1,1,3,5,9,16,31,54,101,183,336,609,1121,2038,3730,6804,12445,22703, %T A354910 41501,75768 %N A354910 Number of compositions of n that are the run-sums of some other composition. %C A354910 Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). %e A354910 The a(0) = 0 through a(6) = 16 compositions: %e A354910 () (1) (2) (3) (4) (5) (6) %e A354910 (12) (13) (14) (15) %e A354910 (21) (22) (23) (24) %e A354910 (31) (32) (33) %e A354910 (121) (41) (42) %e A354910 (122) (51) %e A354910 (131) (123) %e A354910 (212) (132) %e A354910 (221) (141) %e A354910 (213) %e A354910 (222) %e A354910 (231) %e A354910 (312) %e A354910 (321) %e A354910 (1212) %e A354910 (2121) %t A354910 Table[Length[Union[Total/@Split[#]&/@ Join@@Permutations/@IntegerPartitions[n]]],{n,0,15}] %Y A354910 The version for binary words is A000126, complement A000918 %Y A354910 The complement is counted by A354909, ranked by A354904. %Y A354910 These compositions are ranked by A354912 = nonzeros of A354578. %Y A354910 A003242 counts anti-run compositions, ranked by A333489. %Y A354910 A238279 and A333755 count compositions by number of runs. %Y A354910 A353851 counts compositions with all equal run-sums, ranked by A353848. %Y A354910 A353853-A353859 pertain to composition run-sum trajectory. %Y A354910 A353932 lists run-sums of standard compositions, rows ranked by A353847. %Y A354910 Cf. A005811, A027336, A066099, A239312, A274174, A351014, A351597, A353849, A353850, A353864, A354905, A354907. %K A354910 nonn,more %O A354910 0,4 %A A354910 _Gus Wiseman_, Jun 20 2022