cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A354912 Numbers k such that the k-th composition in standard order is the sequence of run-sums of some other composition.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 16, 17, 18, 20, 21, 22, 24, 25, 26, 32, 33, 34, 36, 37, 38, 40, 41, 42, 44, 45, 48, 49, 50, 52, 54, 64, 65, 66, 68, 69, 70, 72, 73, 74, 76, 77, 80, 81, 82, 84, 85, 86, 88, 89, 90, 96, 97, 98, 100, 101, 102, 104, 105, 106, 108
Offset: 0

Views

Author

Gus Wiseman, Jun 22 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			The terms and their corresponding compositions begin:
   0: ()
   1: (1)
   2: (2)
   4: (3)
   5: (2,1)
   6: (1,2)
   8: (4)
   9: (3,1)
  10: (2,2)
  12: (1,3)
  13: (1,2,1)
  16: (5)
  17: (4,1)
  18: (3,2)
  20: (2,3)
  21: (2,2,1)
  22: (2,1,2)
For example, the 21st composition in standard order (2,2,1) equals the run-sums of (1,1,2,1), so 21 is in the sequence. On the other hand, no composition has run-sums equal to the 29th composition (1,1,2,1), so 29 is not in the sequence.
		

Crossrefs

The standard compositions used here are A066099, run-sums A353847/A353932.
These are the positions of nonzero terms in A354578.
The complement is A354904, counted by A354909.
These compositions are counted by A354910.
A003242 counts anti-run compositions, ranked by A333489.
A124767 counts runs in standard compositions.
A238279 and A333755 count compositions by number of runs.
A351014 counts distinct runs of standard compositions, firsts A351015.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353853-A353859 pertain to composition run-sum trajectory.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],MemberQ[Total/@Split[#]&/@ Join@@Permutations/@IntegerPartitions[Total[stc[#]]],stc[#]]&]

A354904 Numbers k such that the k-th composition in standard order is not the sequence of run-sums of any other composition.

Original entry on oeis.org

3, 7, 11, 14, 15, 19, 23, 27, 28, 29, 30, 31, 35, 39, 43, 46, 47, 51, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 67, 71, 75, 78, 79, 83, 87, 91, 92, 93, 94, 95, 99, 103, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127
Offset: 1

Views

Author

Gus Wiseman, Jun 21 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).
The first term k such that the k-th composition in standard order does not have ones sandwiching the same prime number an even number of times is k = 3221, corresponding to the composition (1,3,3,2,2,1).

Examples

			The terms and their corresponding compositions begin:
   3: (1,1)
   7: (1,1,1)
  11: (2,1,1)
  14: (1,1,2)
  15: (1,1,1,1)
  19: (3,1,1)
  23: (2,1,1,1)
  27: (1,2,1,1)
  28: (1,1,3)
  29: (1,1,2,1)
  30: (1,1,1,2)
  31: (1,1,1,1,1)
		

Crossrefs

The standard compositions used here are A066099, run-sums A353847/A353932.
These are the positions of zeros in A354578, firsts A354905.
These compositions are counted by A354909.
The complement is A354912, counted by A354910.
A003242 counts anti-run compositions, ranked by A333489.
A124767 counts runs in standard compositions.
A238279 and A333755 count compositions by number of runs.
A351014 counts distinct runs of standard compositions, firsts A351015.
A353852 ranks compositions with distinct run-sums, counted by A353850.
A353853-A353859 pertain to composition run-sum trajectory.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],FreeQ[Total/@Split[#]&/@ Join@@Permutations/@IntegerPartitions[Total[stc[#]]],stc[#]]&]

A354909 Number of integer compositions of n that are not the run-sums of any other composition.

Original entry on oeis.org

0, 0, 1, 1, 3, 7, 16, 33, 74, 155, 329, 688, 1439, 2975, 6154, 12654, 25964, 53091, 108369, 220643, 448520
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			The a(0) = 0 through a(6) = 16 compositions:
  .  .  (11)  (111)  (112)   (113)    (114)
                     (211)   (311)    (411)
                     (1111)  (1112)   (1113)
                             (1121)   (1122)
                             (1211)   (1131)
                             (2111)   (1221)
                             (11111)  (1311)
                                      (2112)
                                      (2211)
                                      (3111)
                                      (11112)
                                      (11121)
                                      (11211)
                                      (12111)
                                      (21111)
                                      (111111)
		

Crossrefs

The version for binary words is A000918, complement A000126.
These compositions are ranked by A354904 = positions of zeros in A354578.
The complement is counted by A354910, ranked by A354912.
A003242 counts anti-run compositions, ranked by A333489.
A238279 and A333755 count compositions by number of runs.
A353851 counts compositions with all equal run-sums, ranked by A353848.
A353853-A353859 pertain to composition run-sum trajectory.
A353932 lists run-sums of standard compositions, rows ranked by A353847.

Programs

  • Mathematica
    Table[Length[Complement[Join@@Permutations/@IntegerPartitions[n], Total/@Split[#]&/@Join@@Permutations/@IntegerPartitions[n]]],{n,0,15}]
Showing 1-3 of 3 results.