A354911 Number of factorizations of n into relatively prime prime-powers.
1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 0, 1, 1, 1, 4, 0, 1, 1, 3, 0, 1, 0, 2, 2, 1, 0, 5, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 2, 0, 1, 2, 0, 1, 1, 0, 2, 1, 1, 0, 6, 0, 1, 2, 2, 1, 1, 0, 5, 0, 1, 0, 2, 1, 1, 1
Offset: 1
Keywords
Examples
The a(n) factorizations for n = 6, 12, 24, 36, 48, 72, 96: 2*3 3*4 3*8 4*9 3*16 8*9 3*32 2*2*3 2*3*4 2*2*9 2*3*8 2*4*9 3*4*8 2*2*2*3 3*3*4 3*4*4 3*3*8 2*3*16 2*2*3*3 2*2*3*4 2*2*2*9 2*2*3*8 2*2*2*2*3 2*3*3*4 2*3*4*4 2*2*2*3*3 2*2*2*3*4 2*2*2*2*2*3
Links
- Wikipedia, Coprime integers.
Crossrefs
For pairwise coprime instead of relatively prime we have A143731.
The version for partitions instead of factorizations is A356067.
A000005 counts divisors.
A001055 counts factorizations.
A001222 counts prime-power divisors.
A289509 lists numbers whose prime indices are relatively prime.
A295935 counts twice-factorizations with constant blocks (type PPR).
Programs
-
Mathematica
ufacs[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[ufacs[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]]; Table[Length[Select[ufacs[Select[Divisors[n],PrimePowerQ[#]&],n],GCD@@#<=1&]],{n,100}]
Formula
a(n) = A000688(n) if n is nonprime, otherwise a(n) = 0.