cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354917 Decimal expansion of Sum_{p = primes} 1 / (p * log(p)^3).

Original entry on oeis.org

1, 8, 4, 6, 1, 4, 7, 4, 1, 9, 3, 6, 6, 4, 4, 9, 5, 2, 7, 7, 2, 8, 6, 9, 3, 6, 5, 1, 4, 2, 3, 7, 9, 3, 9, 2, 8, 4, 9, 1, 8, 4, 2, 8, 2, 3, 4, 2, 1, 3, 0, 3, 7, 0, 5, 6, 6, 3, 6, 3, 3, 3, 0, 1, 1, 9, 2, 8, 5, 8, 0, 7, 5, 3, 6, 6, 6, 1, 6, 8, 9, 9, 0, 9, 0, 3, 5, 0, 1, 5, 2, 5, 5, 0, 7, 1, 9, 7, 3, 6, 9, 9, 9, 6, 1
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 12 2022

Keywords

Examples

			1.8461474193664495...
		

Crossrefs

Programs

  • Mathematica
    digits = 105; precision = digits + 15;
    tmax = 500; (* integrand considered negligible beyond tmax *)
    kmax = 500; (* f(k) considered negligible beyond kmax *)
    InLogZeta[k_] := NIntegrate[(t - k)^2 Log[Zeta[t]], {t, k, tmax}, WorkingPrecision -> precision, MaxRecursion -> 20, AccuracyGoal -> precision];
    f[k_] := With[{mu = MoebiusMu[k]}, If[mu == 0, 0, (mu/(2 k^4))*InLogZeta[k]]];
    s = 0;
    Do[s = s + f[k]; Print[k, " ", s], {k, 1, kmax}];
    RealDigits[s][[1]][[1 ;; digits]] (* Jean-François Alcover, Jun 21 2022, after Vaclav Kotesovec *)
  • PARI
    default(realprecision, 200); s=0; for(k=1, 500, s = s + moebius(k)/(2*k^4) * intnum(x=k,[[1], 1], (x-k)^2 * log(zeta(x))); print(s));

Extensions

Last digit corrected by Jean-François Alcover and confirmed by Vaclav Kotesovec, Jun 22 2022