This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354919 #14 Jun 13 2022 03:02:18 %S A354919 1,2,4,8,12,15,16,28,30,32,33,40,44,45,48,51,56,60,63,64,65,66,69,76, %T A354919 77,80,87,90,91,92,95,102,104,108,115,120,123,124,126,128,130,132,138, %U A354919 141,143,144,145,153,154,159,161,172,174,175,177,180,182,184,187,188,189,190,192,195,204,207,213,215,221,224 %N A354919 Positions of odd terms in A344005. %C A354919 Numbers k such that the parity of A182665(k) differs from the parity of k itself. %o A354919 (PARI) %o A354919 A354918(n) = for(m=1, oo, if((m*(m+1))%n==0, return(m%2))); %o A354919 isA354919(n) = A354918(n); %o A354919 (Python 3.8+) %o A354919 from itertools import combinations, islice, count %o A354919 from math import prod %o A354919 from sympy import factorint %o A354919 from sympy.ntheory.modular import crt %o A354919 def A354919_gen(startvalue=1): # generator of terms >= startvalue %o A354919 if startvalue <= 1: %o A354919 yield 1 %o A354919 for n in count(max(startvalue,2)): %o A354919 plist = tuple(p**q for p, q in factorint(n).items()) %o A354919 if len(plist) == 1: %o A354919 if (n-1) & 1: yield n %o A354919 elif int(min(min(crt((m, n//m), (0, -1))[0], crt((n//m, m), (0, -1))[0]) for m in (prod(d) for l in range(1, len(plist)//2+1) for d in combinations(plist, l)))) & 1: %o A354919 yield n %o A354919 A354919_list = list(islice(A354919_gen(),40)) # _Chai Wah Wu_, Jun 12 2022 %Y A354919 Cf. A002378, A182665, A344005, A354918 (characteristic function). %Y A354919 Cf. also A354921. %K A354919 nonn %O A354919 1,2 %A A354919 _Antti Karttunen_, Jun 12 2022