This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354922 #15 Jun 17 2022 16:06:12 %S A354922 1,6,10,14,15,18,20,22,24,26,33,34,36,38,42,45,46,50,51,52,54,58,62, %T A354922 63,65,68,69,70,72,74,77,78,82,84,86,87,88,91,94,95,96,98,100,106,110, %U A354922 112,114,115,116,118,122,123,134,136,140,141,142,143,145,146,148,150,152,153,156,158,159,160,161,162,164,166 %N A354922 Positions of even terms in A182665. %C A354922 Numbers k such that the parity of A344005(k) is the same as the parity of k itself, or in other words, numbers k for which A354918(k) = A000035(k). %o A354922 (PARI) %o A354922 A354920(n) = forstep(x=n-1,0,-1,if(!((x*(x-1))%n),return(x%2))); %o A354922 isA354922(n) = !A354920(n); %o A354922 (Python 3.8+) %o A354922 from itertools import combinations, islice, count %o A354922 from math import prod %o A354922 from sympy import factorint %o A354922 from sympy.ntheory.modular import crt %o A354922 def A354922_gen(startvalue=1): # generator of terms >= startvalue %o A354922 if startvalue <= 1: %o A354922 yield 1 %o A354922 for n in count(max(startvalue,2)): %o A354922 plist = tuple(p**q for p, q in factorint(n).items()) %o A354922 if len(plist) != 1 and not (n-int(min(min(crt((m, n//m), (0, -1))[0], crt((n//m, m), (0, -1))[0]) for m in (prod(d) for l in range(1, len(plist)//2+1) for d in combinations(plist, l))))) & 1: %o A354922 yield n %o A354922 A354922_list = list(islice(A354922_gen(),40)) # _Chai Wah Wu_, Jun 12 2022 %Y A354922 Positions of zeros in A354920. %Y A354922 Cf. A000035, A182665, A344005, A354918, A354921 (complement). %K A354922 nonn %O A354922 1,2 %A A354922 _Antti Karttunen_, Jun 12 2022