cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354929 Numbers of the form 2*p^e, with p an odd prime and e >= 2.

This page as a plain text file.
%I A354929 #13 Jun 18 2022 04:03:48
%S A354929 18,50,54,98,162,242,250,338,486,578,686,722,1058,1250,1458,1682,1922,
%T A354929 2662,2738,3362,3698,4374,4394,4418,4802,5618,6250,6962,7442,8978,
%U A354929 9826,10082,10658,12482,13122,13718,13778,15842,18818,20402,21218,22898,23762,24334,25538,29282,31250,32258
%N A354929 Numbers of the form 2*p^e, with p an odd prime and e >= 2.
%C A354929 Conjecturally numbers k > 1 such that A047994(k) = A344005(k) (see A354928), and k is in A265128. See comments in A346608.
%H A354929 Amiram Eldar, <a href="/A354929/b354929.txt">Table of n, a(n) for n = 1..10000</a>
%F A354929 Sum_{n>=1} 1/a(n) = (A136141 - 1/2)/2 = 0.1365783345... - _Amiram Eldar_, Jun 18 2022
%t A354929 Select[Range[33000], IntegerExponent[#, 2] == 1 && CompositeQ[#/2] && PrimePowerQ[#/2] &] (* _Amiram Eldar_, Jun 18 2022 *)
%o A354929 (PARI) isA354929(n) = ((2==(n%4)) && (isprimepower(n/2)>1));
%Y A354929 Subsequence of A278568.
%Y A354929 Intersection of A265128 and A354928 (conjectured).
%Y A354929 Cf. A047994, A136141, A344005, A346608, A354924.
%K A354929 nonn
%O A354929 1,1
%A A354929 _Antti Karttunen_, Jun 13 2022