cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354940 Square array A(n, k) = A354930(n, k)/n, read by falling antidiagonals.

This page as a plain text file.
%I A354940 #8 Jun 16 2022 10:26:29
%S A354940 1,2,3,3,5,4,4,7,7,5,5,9,13,9,3,7,11,16,13,6,7,8,13,19,17,8,13,4,9,17,
%T A354940 25,21,11,19,5,3,11,19,31,25,13,25,8,9,5,13,23,37,29,16,31,11,11,7,11,
%U A354940 16,25,43,37,23,37,15,17,10,31,3,17,27,49,41,26,43,19,19,14,41,4,13,19,29,61,49,31,49,22,25,16,51,6,25,7
%N A354940 Square array A(n, k) = A354930(n, k)/n, read by falling antidiagonals.
%C A354940 Array is read by descending antidiagonals with (n,k) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), etc.
%e A354940 The top left 15x16 corner of the array:
%e A354940 n\k  |  1   2   3   4   5   6   7   8    9   10   11   12   13   14   15
%e A354940 -----+---------------------------------------------------------------------
%e A354940    1 |  1,  2,  3,  4,  5,  7,  8,  9,  11,  13,  16,  17,  19,  23,  25,
%e A354940    2 |  3,  5,  7,  9, 11, 13, 17, 19,  23,  25,  27,  29,  31,  37,  41,
%e A354940    3 |  4,  7, 13, 16, 19, 25, 31, 37,  43,  49,  61,  64,  67,  73,  79,
%e A354940    4 |  5,  9, 13, 17, 21, 25, 29, 37,  41,  49,  53,  57,  61,  73,  81,
%e A354940    5 |  3,  6,  8, 11, 13, 16, 23, 26,  31,  36,  41,  43,  46,  51,  53,
%e A354940    6 |  7, 13, 19, 25, 31, 37, 43, 49,  61,  67,  73,  79,  97, 103, 109,
%e A354940    7 |  4,  5,  8, 11, 15, 19, 22, 25,  29,  32,  39,  43,  47,  50,  53,
%e A354940    8 |  3,  9, 11, 17, 19, 25, 27, 33,  41,  43,  49,  57,  59,  67,  73,
%e A354940    9 |  5,  7, 10, 14, 16, 19, 23, 25,  28,  32,  37,  41,  43,  46,  50,
%e A354940   10 | 11, 31, 41, 51, 61, 71, 81, 91, 101, 121, 131, 141, 151, 171, 181,
%e A354940   11 |  3,  4,  6,  9, 12, 15, 17, 23,  25,  28,  31,  34,  37,  45,  47,
%e A354940   12 | 13, 25, 37, 49, 61, 73, 85, 97, 109, 121, 145, 157, 169, 181, 193,
%e A354940   13 |  7,  8,  9, 11, 14, 20, 22, 23,  27,  33,  37,  40,  46,  47,  48,
%e A354940   14 |  5, 15, 19, 29, 43, 47, 57, 61,  71,  89,  99, 103, 113, 127, 131,
%e A354940   15 |  4,  8, 16, 19, 23, 31, 38, 46,  49,  53,  61,  64,  76,  79,  83,
%e A354940   16 |  7, 11, 13, 17, 23, 27, 29, 33,  43,  49,  59,  61,  65,  71,  75,
%o A354940 (PARI)
%o A354940 up_to = 105;
%o A354940 A345992(n) = for(m=1, oo, if((m*(m+1))%n==0, return(gcd(n,m))));
%o A354940 memoA354930sq = Map();
%o A354940 A354930sq(n, k) = { my(v=0); if(!mapisdefined(memoA354930sq,[n,k-1],&v),if(1==k, v=0, v = A354930sq(n, k-1))); for(i=1+v,oo,if(A345992(i)==n,mapput(memoA354930sq,[n,k],i); return(i))); };
%o A354940 A354940sq(n, k) = (A354930sq(n, k)/n);
%o A354940 A354940list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A354940sq(col,(a-(col-1))))); (v); };
%o A354940 v354940 = A354940list(up_to);
%o A354940 A354940(n) = v354940[n];
%Y A354940 Cf. A345992, A354930.
%Y A354940 Cf. A354932 (column 1).
%Y A354940 Rows 1 .. 7 (some of these are conjectural): A000961, A061345 (without its initial 1), A137827, A354934, A354935, A354936, A354937, A354938, A354939.
%K A354940 nonn,tabl
%O A354940 1,2
%A A354940 _Antti Karttunen_, Jun 15 2022