cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354941 a(n) = Sum_{k=0..n} binomial(n,k)^3 * k! * (-2)^(n-k).

This page as a plain text file.
%I A354941 #7 Jun 18 2022 14:21:52
%S A354941 1,-1,-10,-2,488,4088,-9968,-730480,-9751936,-11540096,2480655104,
%T A354941 62522038016,680469314560,-8292439149568,-606011029669888,
%U A354941 -15765339965278208,-183530875864317952,4164677242501038080,318357069130977181696,10359690304436314505216,176911847384965046337536
%N A354941 a(n) = Sum_{k=0..n} binomial(n,k)^3 * k! * (-2)^(n-k).
%F A354941 Sum_{n>=0} a(n) * x^n / n!^3 = BesselI(0,2*sqrt(x)) * Sum_{n>=0} (-2)^n * x^n / n!^3.
%t A354941 Table[Sum[Binomial[n, k]^3 k! (-2)^(n - k), {k, 0, n}], {n, 0, 20}]
%t A354941 nmax = 20; CoefficientList[Series[BesselI[0, 2 Sqrt[x]] Sum[(-2)^k x^k/k!^3, {k, 0, nmax}], {x, 0, nmax}], x] Range[0, nmax]!^3
%o A354941 (PARI) a(n) = sum(k=0, n, binomial(n,k)^3 * k! * (-2)^(n-k)); \\ _Michel Marcus_, Jun 12 2022
%Y A354941 Cf. A000023, A274246, A295382, A343840, A354942.
%K A354941 sign
%O A354941 0,3
%A A354941 _Ilya Gutkovskiy_, Jun 12 2022