This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354942 #6 Jun 18 2022 14:22:10 %S A354942 1,-2,-13,60,1113,1002,-149049,-1932696,7188705,676972566,10821753819, %T A354942 -32865363468,-5892948042327,-144308265498270,-748826955982593, %U A354942 74472859430936928,3199088479682040129,57854159449349840046,-654712764990637945725,-87482030500940669619156 %N A354942 a(n) = Sum_{k=0..n} binomial(n,k)^3 * k! * (-3)^(n-k). %F A354942 Sum_{n>=0} a(n) * x^n / n!^3 = BesselI(0,2*sqrt(x)) * Sum_{n>=0} (-3)^n * x^n / n!^3. %t A354942 Table[Sum[Binomial[n, k]^3 k! (-3)^(n - k), {k, 0, n}], {n, 0, 19}] %t A354942 nmax = 19; CoefficientList[Series[BesselI[0, 2 Sqrt[x]] Sum[(-3)^k x^k/k!^3, {k, 0, nmax}], {x, 0, nmax}], x] Range[0, nmax]!^3 %o A354942 (PARI) a(n) = sum(k=0, n, binomial(n,k)^3 * k! * (-3)^(n-k)); \\ _Michel Marcus_, Jun 12 2022 %Y A354942 Cf. A010843, A277386, A343840, A354941. %K A354942 sign %O A354942 0,2 %A A354942 _Ilya Gutkovskiy_, Jun 12 2022