cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354950 The number of squarefree numbers whose largest prime divisor is prime(n) and that are averages of twin prime pairs.

This page as a plain text file.
%I A354950 #14 Jun 14 2022 21:40:11
%S A354950 0,1,1,1,2,2,3,7,4,9,20,31,57,88,139,282,421,806,1397,2572,4440,7863,
%T A354950 14580,26211,47727,86929,159972,292650,542477,1000087,1850347,3432551,
%U A354950 6381199
%N A354950 The number of squarefree numbers whose largest prime divisor is prime(n) and that are averages of twin prime pairs.
%F A354950 Conjecture: Limit_{n->oo} log(a(n))/(n*log(n)) = c ~ 0.13... .
%e A354950 n  prime(n)  a(n)  terms k of A070195 with A006530(k) = prime(n)
%e A354950 -  --------  ----  ---------------------------------------------
%e A354950 1   2        0     -
%e A354950 2   3        1     6
%e A354950 3   5        1     30
%e A354950 4   7        1     42
%e A354950 5  11        2     462, 2310
%e A354950 6  13        2     858, 2730
%e A354950 7  17        3     102, 9282, 102102
%e A354950 8  19        7     570, 1482, 6270, 21318, 43890, 51870, 1939938
%t A354950 a[n_] := Count[Prime[n] * Divisors[Product[Prime[i], {i, 1, n - 1}]], _?(PrimeQ[# - 1] && PrimeQ[# + 1] &)]; Array[a, 10]
%o A354950 (Python)
%o A354950 from math import prod
%o A354950 from itertools import combinations
%o A354950 from sympy import primerange, prime, isprime
%o A354950 def A354950(n):
%o A354950     plist = list(primerange(2,p:=prime(n)))
%o A354950     return sum(1 for l in range(1,n) for d in combinations(plist,l) if isprime((q:= prod(d)*p)-1) and isprime(q+1)) # _Chai Wah Wu_, Jun 14 2022
%Y A354950 Cf. A005117, A006530, A014574, A070195, A354951.
%K A354950 nonn,more
%O A354950 1,5
%A A354950 _Amiram Eldar_, Jun 13 2022