This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354950 #14 Jun 14 2022 21:40:11 %S A354950 0,1,1,1,2,2,3,7,4,9,20,31,57,88,139,282,421,806,1397,2572,4440,7863, %T A354950 14580,26211,47727,86929,159972,292650,542477,1000087,1850347,3432551, %U A354950 6381199 %N A354950 The number of squarefree numbers whose largest prime divisor is prime(n) and that are averages of twin prime pairs. %F A354950 Conjecture: Limit_{n->oo} log(a(n))/(n*log(n)) = c ~ 0.13... . %e A354950 n prime(n) a(n) terms k of A070195 with A006530(k) = prime(n) %e A354950 - -------- ---- --------------------------------------------- %e A354950 1 2 0 - %e A354950 2 3 1 6 %e A354950 3 5 1 30 %e A354950 4 7 1 42 %e A354950 5 11 2 462, 2310 %e A354950 6 13 2 858, 2730 %e A354950 7 17 3 102, 9282, 102102 %e A354950 8 19 7 570, 1482, 6270, 21318, 43890, 51870, 1939938 %t A354950 a[n_] := Count[Prime[n] * Divisors[Product[Prime[i], {i, 1, n - 1}]], _?(PrimeQ[# - 1] && PrimeQ[# + 1] &)]; Array[a, 10] %o A354950 (Python) %o A354950 from math import prod %o A354950 from itertools import combinations %o A354950 from sympy import primerange, prime, isprime %o A354950 def A354950(n): %o A354950 plist = list(primerange(2,p:=prime(n))) %o A354950 return sum(1 for l in range(1,n) for d in combinations(plist,l) if isprime((q:= prod(d)*p)-1) and isprime(q+1)) # _Chai Wah Wu_, Jun 14 2022 %Y A354950 Cf. A005117, A006530, A014574, A070195, A354951. %K A354950 nonn,more %O A354950 1,5 %A A354950 _Amiram Eldar_, Jun 13 2022