cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354952 Decimal expansion of Sum_{p primes} 1/(p*log(p) - 1).

Original entry on oeis.org

3, 6, 6, 3, 5, 0, 4, 5, 8, 5, 4, 6, 5, 6, 0, 3, 3, 0, 1, 6, 0, 2, 8, 2, 5, 2, 4, 4, 8, 0, 8, 2, 1, 2, 3, 3, 3, 2, 0, 9, 3, 4, 4, 5, 2, 2, 5, 6, 4, 3, 7, 3, 9, 9, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 13 2022

Keywords

Examples

			3.663504585465603301602825244808212333209344522564373994...
		

Crossrefs

Programs

  • PARI
    prec = 60; tot = 0; dif = 10^(-prec); for(s=1, 200, default(realprecision, 200 + 6*s); su = 0; d = 0; k = 0; while(abs(d)>dif || exponent(d)==-oo, k=k+1; d = moebius(k) / ((s-1)! * k^(s+1)) * intnum(x=s*k, [[1], 1], (x-s*k)^(s-1) * log(zeta(x))); su = su + d; ); tot = tot + su; print(tot);); \\ It takes several hours.

Formula

Equals Sum_{k>=1} (Sum_{p primes} 1/(p*log(p))^k).