cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354953 Decimal expansion of Sum_{p = primes} 1 / (p * log(p)^5).

Original entry on oeis.org

3, 3, 5, 9, 8, 9, 8, 7, 6, 0, 1, 2, 7, 2, 5, 3, 0, 8, 8, 3, 6, 4, 2, 7, 4, 3, 6, 8, 0, 6, 3, 3, 1, 3, 5, 7, 0, 4, 0, 7, 4, 7, 2, 6, 8, 9, 6, 0, 3, 4, 6, 9, 0, 0, 4, 1, 9, 4, 8, 6, 3, 1, 4, 0, 6, 4, 5, 8, 7, 2, 3, 3, 6, 8, 8, 3, 0, 4, 0, 4, 7, 7, 9, 2, 1, 0, 9, 8, 5, 4, 8, 4, 1, 4, 3, 9, 2, 3, 5, 5, 8, 0, 8, 2, 0
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 13 2022

Keywords

Examples

			3.359898760127253088364274368063313570407472689603469004194863140645872...
		

Crossrefs

Programs

  • Mathematica
    digits = 105; precision = digits + 15;
    tmax = 400; (* integrand considered negligible beyond tmax *)
    kmax = 400; (* f(k) considered negligible beyond kmax *)
    InLogZeta[k_] := NIntegrate[(t-k)^4 Log[Zeta[t]], {t, k, tmax},
      WorkingPrecision -> precision, MaxRecursion -> 20,
      AccuracyGoal -> precision];
    f[k_] := With[{mu = MoebiusMu[k]}, If[mu==0, 0, (mu/(4! k^6))* InLogZeta[k]]];
    s = 0; Do[s = s + f[k]; Print[k, " ", s], {k, 1, kmax}];
    RealDigits[s][[1]][[1 ;; digits]] (* Jean-François Alcover, Jun 23 2022 *)
  • PARI
    default(realprecision, 200); s=0; for(k=1, 500, s = s + moebius(k)/(4!*k^6) * intnum(x=k,[[1], 1], (x-k)^4 * log(zeta(x))); print(s));

Extensions

Last 5 digits corrected by Vaclav Kotesovec, Jun 22 2022, following a suggestion from Jean-François Alcover