cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354954 Decimal expansion of Sum_{p = primes} 1 / (p * log(p)^4).

This page as a plain text file.
%I A354954 #9 Jun 22 2022 08:57:46
%S A354954 2,4,4,3,2,2,7,0,4,3,5,4,4,4,1,0,1,8,8,7,2,9,6,8,3,2,9,7,3,6,9,7,3,4,
%T A354954 5,7,6,4,6,1,4,5,3,0,8,7,7,4,0,4,0,0,4,2,8,6,6,4,6,5,1,4,8,5,2,6,7,3,
%U A354954 5,0,8,5,9,9,6,4,5,3,2,5,5,9,4,5,7,8,7,6,9,0,3,2,6,7,0,0,9,0,6,0,1,6,7,9,2
%N A354954 Decimal expansion of Sum_{p = primes} 1 / (p * log(p)^4).
%H A354954 R. J. Mathar, <a href="https://arxiv.org/abs/0811.4739">Twenty digits of some integrals of the prime zeta function</a>, arXiv:0811.4739 (2008-2009).
%e A354954 2.443227043544410188729683297369734576461453087740400428664651485267350...
%o A354954 (PARI) default(realprecision, 200); s=0; for(k=1, 500, s = s + moebius(k)/(6*k^5) * intnum(x=k,[[1], 1], (x-k)^3 * log(zeta(x))); print(s));
%Y A354954 Cf. A137245, A319231, A354917, A354953.
%K A354954 nonn,cons
%O A354954 1,1
%A A354954 _Vaclav Kotesovec_, Jun 13 2022
%E A354954 Last 2 digits corrected by _Vaclav Kotesovec_, Jun 22 2022