This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354967 #9 Feb 03 2023 20:48:46 %S A354967 1,2,2,3,3,3,4,5,5,5,5,7,11,11,11,6,11,17,31,31,31,7,13,31,59,127,127, %T A354967 127,8,17,41,127,277,709,709,709,9,19,59,179,709,1787,5381,5381,5381, %U A354967 10,23,67,277,1063,5381,15299,52711,52711,52711,11,29,83,331,1787,8527,52711,167449,648391,648391,648391 %N A354967 Square array A(n, k), n > 0, k >= 0, read by antidiagonals upwards; A(n, k) is the image of n after k iterates of the prime function (A000040). %C A354967 For any m > 0, m appears A049076(m) times in the array. %F A354967 A(n, 0) = n. %F A354967 A(n, k+1) = A000040(A(n, k)). %F A354967 A(n, n) = A058009(n). %F A354967 A(n, A000040(n)) = A344946(n). %F A354967 A(n, 1) = A000040(n). %F A354967 A(n, 2) = A006450(n). %F A354967 A(n, 3) = A038580(n). %F A354967 A(1, k) = A007097(k). %F A354967 A(4, k) = A057450(k+1). %F A354967 A(6, k) = A057451(k+1). %F A354967 A(8, k) = A057452(k+1). %F A354967 A(9, k) = A057453(k+1). %e A354967 Array A(n, k) begins: %e A354967 n\k| 0 1 2 3 4 5 6 7 8 %e A354967 ---+-------------------------------------------------------- %e A354967 1| 1 2 3 5 11 31 127 709 5381 %e A354967 2| 2 3 5 11 31 127 709 5381 52711 %e A354967 3| 3 5 11 31 127 709 5381 52711 648391 %e A354967 4| 4 7 17 59 277 1787 15299 167449 2269733 %e A354967 5| 5 11 31 127 709 5381 52711 648391 9737333 %e A354967 6| 6 13 41 179 1063 8527 87803 1128889 17624813 %e A354967 7| 7 17 59 277 1787 15299 167449 2269733 37139213 %e A354967 8| 8 19 67 331 2221 19577 219613 3042161 50728129 %o A354967 (PARI) A(n,k) = { my (v=n); for (i=1, k, v=prime(v)); return (v) } %Y A354967 Cf. A000040, A006450, A007097, A038580, A049076, A057450, A057451, A057452, A057453, A058009, A114537, A344946. %K A354967 nonn,tabl,easy %O A354967 1,2 %A A354967 _Rémy Sigrist_, Jun 14 2022