This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354973 #32 Jul 07 2022 02:23:41 %S A354973 0,1,2,4,8,9,18,19,38,39,40,41,82,83,166,167,168,169,338,339,678,679, %T A354973 680,681,1362,1363,1364,1365,1366,1367,2734,2735,5470,5471,5472,5473, %U A354973 5474,5475,10950,10951,10952,10953,21906,21907,43814,43815,43816,43817,87634 %N A354973 a(0)=0; for n > 0, a(n) = 2*a(n-1) if n-1 is prime, a(n-1) + 1 otherwise. %F A354973 a(n) = A110299(k) - 2^k + n + 1, where k = primepi(n-1) and taking A110299(0) = 0. - _Kevin Ryde_, Jun 22 2022 %e A354973 5 is prime, so a(6) = 2*a(5) = 2*9 = 18. %e A354973 6 is not prime, so a(7) = a(6) + 1 = 18 + 1 = 19. %t A354973 a[0] = 0; a[n_] := a[n] = If[PrimeQ[n - 1], 2*a[n - 1], a[n - 1] + 1]; Array[a, 50, 0] (* _Amiram Eldar_, Jun 21 2022 *) %o A354973 (Python) %o A354973 from sympy import isprime %o A354973 a = [0]; [a.append(2*a[-1] if isprime(n) else a[-1]+1) for n in range(48)] %o A354973 print(a) # _Michael S. Branicky_, Jun 21 2022 %o A354973 (PARI) a(n) = my(k=primepi(n-1)); fromdigits(primes(k),2) - 1<<k + n + 1; \\ _Kevin Ryde_, Jun 22 2022 %Y A354973 Cf. A110299. %K A354973 nonn %O A354973 0,3 %A A354973 _Ben White_, Jun 14 2022