This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354975 #20 Jun 20 2022 04:18:30 %S A354975 1,2,6,9,16,26,25,46,47,54,81,112,140,116,173,215,254,234,317,329,409, %T A354975 440,511,584,581,582,666,649,776,866,875,967,1057,1152,1310,1419,1246, %U A354975 1294,1296,1551,1599,1722,1970,2152,2166,2154,2338,2396,2523,2831,3120,2867,3220,3332,3274,3266,3462 %N A354975 a(n) = Sum_{i=1..n} (prime(i+n) mod prime(i)). %H A354975 Michael De Vlieger, <a href="/A354975/b354975.txt">Table of n, a(n) for n = 1..10000</a> %e A354975 For n = 3, a(n) = (7 mod 2) + (11 mod 3) + (13 mod 5) = 1+2+3 = 6. %p A354975 f:= proc(n) local k; %p A354975 add(ithprime(n+k) mod ithprime(k),k=1..n) %p A354975 end proc: %p A354975 map(f, [$1..100]); %t A354975 a[n_]:=Sum[Mod[Prime[i+n],Prime[i]],{i,n}]; Array[a,57] (* _Stefano Spezia_, Jun 15 2022 *) %o A354975 (PARI) a(n) = sum(i=1, n, prime(i+n) % prime(i)); \\ _Michel Marcus_, Jun 15 2022 %o A354975 (Python) %o A354975 from sympy import prime %o A354975 def A354975(n): return sum(prime(i+n) % prime(i) for i in range(1,n+1)) # _Chai Wah Wu_, Jun 19 2022 %Y A354975 Cf. A000040, A207409, A354972, A355009. %K A354975 nonn %O A354975 1,2 %A A354975 _J. M. Bergot_ and _Robert Israel_, Jun 15 2022