cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354977 Triangle read by rows. T(n, k) = Sum_{j=0..n}((-1)^(n-j)*binomial(n, j)*j^(n+k)) / n!.

Original entry on oeis.org

1, 1, 1, 1, 3, 7, 1, 6, 25, 90, 1, 10, 65, 350, 1701, 1, 15, 140, 1050, 6951, 42525, 1, 21, 266, 2646, 22827, 179487, 1323652, 1, 28, 462, 5880, 63987, 627396, 5715424, 49329280, 1, 36, 750, 11880, 159027, 1899612, 20912320, 216627840, 2141764053
Offset: 0

Views

Author

Peter Luschny, Jun 15 2022

Keywords

Examples

			Triangle T(n, k) begins:
[0] 1;
[1] 1,  1;
[2] 1,  3,   7;
[3] 1,  6,  25,    90;
[4] 1, 10,  65,   350,   1701;
[5] 1, 15, 140,  1050,   6951,   42525;
[6] 1, 21, 266,  2646,  22827,  179487,  1323652;
[7] 1, 28, 462,  5880,  63987,  627396,  5715424,  49329280;
[8] 1, 36, 750, 11880, 159027, 1899612, 20912320, 216627840, 2141764053;
		

Crossrefs

T(n,1) = A000217, T(n,n) = A007820, A354978 (row sums), A048993.

Programs

  • Maple
    T := (n, k) -> add((-1)^(n - j)*binomial(n, j)*j^(n + k), j = 0..n) / n!:
    seq(seq(T(n, k), k = 0..n), n = 0..8);

Formula

T(n, k) = Stirling2(n + k, n).