A354977 Triangle read by rows. T(n, k) = Sum_{j=0..n}((-1)^(n-j)*binomial(n, j)*j^(n+k)) / n!.
1, 1, 1, 1, 3, 7, 1, 6, 25, 90, 1, 10, 65, 350, 1701, 1, 15, 140, 1050, 6951, 42525, 1, 21, 266, 2646, 22827, 179487, 1323652, 1, 28, 462, 5880, 63987, 627396, 5715424, 49329280, 1, 36, 750, 11880, 159027, 1899612, 20912320, 216627840, 2141764053
Offset: 0
Examples
Triangle T(n, k) begins: [0] 1; [1] 1, 1; [2] 1, 3, 7; [3] 1, 6, 25, 90; [4] 1, 10, 65, 350, 1701; [5] 1, 15, 140, 1050, 6951, 42525; [6] 1, 21, 266, 2646, 22827, 179487, 1323652; [7] 1, 28, 462, 5880, 63987, 627396, 5715424, 49329280; [8] 1, 36, 750, 11880, 159027, 1899612, 20912320, 216627840, 2141764053;
Links
- Andrew Francis and Michael Hendriksen, Counting spinal phylogenetic networks, arXiv:2502.14223 [q-bio.PE], 2025. See p. 13.
Programs
-
Maple
T := (n, k) -> add((-1)^(n - j)*binomial(n, j)*j^(n + k), j = 0..n) / n!: seq(seq(T(n, k), k = 0..n), n = 0..8);
Formula
T(n, k) = Stirling2(n + k, n).