This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354985 #12 Jun 16 2022 21:18:51 %S A354985 1,1,2,3,4,2,6,7,8,4,10,3,12,6,1,15,16,8,18,4,6,10,22,2,24,12,26,1,28, %T A354985 1,30,31,1,16,2,8,36,18,12,1,40,6,42,1,1,22,46,15,48,24,1,12,52,26,10, %U A354985 7,18,28,58,3,60,30,3,63,1,1,66,16,1,2,70,8,72,36,24,1,3,12,78,15,80,40,82,4,2,42,1,2,88 %N A354985 a(n) = gcd(A047994(n), A344005(n)). %H A354985 Antti Karttunen, <a href="/A354985/b354985.txt">Table of n, a(n) for n = 1..20000</a> %H A354985 Antti Karttunen, <a href="/A354985/a354985.txt">Data supplement: n, a(n) computed for n = 1..65537</a> %F A354985 a(n) = gcd(A047994(n), A344005(n)). %F A354985 a(n) = gcd(A047994(n), A346607(n)) = gcd(A344005(n), A346607(n)). %t A354985 s[n_] := Module[{m = 1}, While[!Divisible[m*(m + 1), n], m++]; m]; f[p_, e_] := p^e - 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; uphi[1] = 1; a[n_] := GCD[uphi[n], s[n]]; Array[a, 100] (* _Amiram Eldar_, Jun 16 2022 *) %o A354985 (PARI) %o A354985 A047994(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^f[2, i])-1); }; %o A354985 A344005(n) = for(m=1, oo, if((m*(m+1))%n==0, return(m))); \\ From A344005 %o A354985 A354985(n) = gcd(A047994(n), A344005(n)); %Y A354985 Cf. A047994, A344005, A346607, A354986, A354987. %Y A354985 Cf. also A345992. %K A354985 nonn %O A354985 1,3 %A A354985 _Antti Karttunen_, Jun 16 2022