This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355001 #9 Jul 18 2022 16:38:43 %S A355001 1,3,1,3,1,5,1,3,5,3,1,5,1,3,5,3,1,5,1,3,5,3,1,5,1,3,5,3,1,7,1,3,1,3, %T A355001 7,5,1,3,5,3,1,5,1,3,5,3,1,5,1,3,5,3,1,5,7,3,5,3,1,7,1,3,1,3,7,5,1,3, %U A355001 5,3,1,5,1,3,5,3,1,5,1,3,5,3,1,5,7,3,5,3,1,7,1,3,1,3,7,5,1,3,5,3,1,5,1,3,5 %N A355001 Smallest common prime factor of A003961(n) and A276086(n), or 1 if they are coprime, where A003961 is fully multiplicative with a(p) = nextprime(p), and A276086 is primorial base exp-function. %H A355001 Antti Karttunen, <a href="/A355001/b355001.txt">Table of n, a(n) for n = 1..100000</a> %H A355001 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A355001 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %F A355001 a(n) = A020639(A355442(n)) = A020639(gcd(A003961(n), A276086(n))). %o A355001 (PARI) %o A355001 A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; %o A355001 A020639(n) = if(1==n,n,vecmin(factor(n)[, 1])); %o A355001 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; %o A355001 A355442(n) = gcd(A003961(n), A276086(n)); %o A355001 A355001(n) = A020639(A355442(n)); %Y A355001 Cf. A003961, A020639, A276086, A284723 (even bisection), A355442, A355820, A355821 (positions of 1's). %K A355001 nonn %O A355001 1,2 %A A355001 _Antti Karttunen_, Jul 13 2022