This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355006 #8 Jun 17 2022 03:43:22 %S A355006 1,0,1,0,2,1,0,18,9,1,0,384,176,24,1,0,15000,6250,875,50,1,0,933120, %T A355006 355104,48600,3060,90,1,0,84707280,29647548,3899224,252105,8575,147,1, %U A355006 0,10569646080,3425697792,430309376,27725824,1003520,20608,224,1 %N A355006 Triangle read by rows. T(n, k) = n^(n - k) * |Stirling1(n, k)|. %e A355006 Table T(n, k) begins: %e A355006 [0] 1; %e A355006 [1] 0, 1; %e A355006 [2] 0, 2, 1; %e A355006 [3] 0, 18, 9, 1; %e A355006 [4] 0, 384, 176, 24, 1; %e A355006 [5] 0, 15000, 6250, 875, 50, 1; %e A355006 [6] 0, 933120, 355104, 48600, 3060, 90, 1; %e A355006 [7] 0, 84707280, 29647548, 3899224, 252105, 8575, 147, 1; %e A355006 [8] 0, 10569646080, 3425697792, 430309376, 27725824, 1003520, 20608, 224, 1; %p A355006 seq(seq(n^(n - k)*abs(Stirling1(n, k)), k = 0..n), n = 0..9); %t A355006 T[n_, k_] := If[n == k == 0, 1, n^(n - k) * Abs[StirlingS1[n, k]]]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* _Amiram Eldar_, Jun 17 2022 *) %Y A355006 A152684 (column 1), A006002 (subdiagonal), A092985 (row sums), A355007. %K A355006 nonn,tabl %O A355006 0,5 %A A355006 _Peter Luschny_, Jun 17 2022