This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355007 #15 Mar 31 2023 05:21:13 %S A355007 1,0,1,0,2,4,0,6,27,27,0,24,176,384,256,0,120,1250,4375,6250,3125,0, %T A355007 720,9864,48600,110160,116640,46656,0,5040,86436,557032,1764735, %U A355007 2941225,2470629,823543,0,40320,836352,6723584,27725824,64225280,84410368,58720256,16777216 %N A355007 Triangle read by rows. T(n, k) = n^k * |Stirling1(n, k)|. %F A355007 Sum_{k=0..n} (-1)^k * T(n,k) = A133942(n). - _Alois P. Heinz_, Mar 30 2023 %F A355007 Conjecture: T(n,k) = A056856(n,k)*n. - _R. J. Mathar_, Mar 31 2023 %e A355007 Table T(n, k) begins: %e A355007 [0] 1; %e A355007 [1] 0, 1; %e A355007 [2] 0, 2, 4; %e A355007 [3] 0, 6, 27, 27; %e A355007 [4] 0, 24, 176, 384, 256; %e A355007 [5] 0, 120, 1250, 4375, 6250, 3125; %e A355007 [6] 0, 720, 9864, 48600, 110160, 116640, 46656; %e A355007 [7] 0, 5040, 86436, 557032, 1764735, 2941225, 2470629, 823543; %p A355007 seq(seq(n^k*abs(Stirling1(n, k)), k = 0..n), n = 0..9); %t A355007 T[n_, k_] := If[n == k == 0, 1, n^k * Abs[StirlingS1[n, k]]]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* _Amiram Eldar_, Jun 17 2022 *) %Y A355007 A000142 (column 1), A000407 (row sums), A000312 (main diagonal), A355006. %Y A355007 Cf. A133942. %K A355007 nonn,tabl %O A355007 0,5 %A A355007 _Peter Luschny_, Jun 17 2022