cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A354914 The least cost to reach n using additions and multiplications, where multiplication is free.

Original entry on oeis.org

0, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 3, 1, 2, 2, 3, 2, 3, 3, 4, 2, 2, 3, 2, 3, 3, 3, 3, 1, 2, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 4, 4, 2, 3, 2, 3, 3, 4, 2, 3, 3, 3, 3, 3, 3, 4, 3, 3, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 3, 3, 4, 3, 4, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 4, 2, 3, 3, 3, 2
Offset: 1

Views

Author

Stan Wagon, Jun 11 2022

Keywords

Comments

Start with 1. Apply multiplication or addition to any values (not necessarily distinct) already attained to get a finite sequence of integers ending in n. The cost of addition is one unit, but multiplication is free. Then a(n) is the cost of the least expensive path to n.
The problem is folklore. It is not hard to prove that the cost function is unbounded. The values given were produced by Joseph DeVincentis, Stan Wagon, and Al Zimmermann.

Examples

			For n = 23, the least cost a(23) is 4, via the sequence 1, 2, 3, 4, 8, 16, 19, 23.
		

Crossrefs

Showing 1-1 of 1 results.