cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355026 Irregular table read by rows: the n-th row gives the possible values of the number of divisors of numbers with n prime divisors (counted with multiplicity).

Original entry on oeis.org

1, 2, 3, 4, 4, 6, 8, 5, 8, 9, 12, 16, 6, 10, 12, 16, 18, 24, 32, 7, 12, 15, 16, 20, 24, 27, 32, 36, 48, 64, 8, 14, 18, 20, 24, 30, 32, 36, 40, 48, 54, 64, 72, 96, 128, 9, 16, 21, 24, 25, 28, 36, 40, 45, 48, 60, 64, 72, 80, 81, 96, 108, 128, 144, 192, 256
Offset: 0

Views

Author

Amiram Eldar, Jun 16 2022

Keywords

Comments

First differs from A074139 at the 8th row.
The n-th row begins with n+1, which corresponds to powers of primes, and ends with 2^n, which corresponds to squarefree numbers.
The n-th row contains the distinct values of the n-th row of A238963.

Examples

			Table begins:
  1;
  2;
  3, 4;
  4, 6, 8;
  5, 8, 9, 12, 16;
  6, 10, 12, 16, 18, 24, 32;
  7, 12, 15, 16, 20, 24, 27, 32, 36, 48, 64;
  8, 14, 18, 20, 24, 30, 32, 36, 40, 48, 54, 64, 72, 96, 128;
  ...
Numbers k with Omega(k) = 2 are either of the form p^2 with p prime, or of the form p1*p2 with p1 and p2 being distinct primes. The corresponding numbers of divisors are 3 and 4, respectively. Therefore the second row is {3, 4}.
		

Crossrefs

Programs

  • Mathematica
    row[n_] := Union[Times @@ (# + 1) & /@ IntegerPartitions[n]]; Array[row, 9, 0] // Flatten
  • PARI
    row(n) = { my (m=Map()); forpart(p=n, mapput(m,prod(k=1, #p, 1+p[k]),0)); Vec(m) } \\ Rémy Sigrist, Jun 17 2022