This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355034 #10 Jun 18 2022 08:41:50 %S A355034 3,2,3,2,2,2,4,2,2,2,2,2,2,3,8,2,2,2,2,2,2,3,2,2,2,5,2,3,3,2,4,2,2,2, %T A355034 2,2,2,3,2,2,2,3,2,3,4,2,2,2,2,3,2,3,3,2,2,3,4,2,6,2,2,3,18,2,2,2,2,2, %U A355034 2,3,2,2,2,3,2,3,6,2,2,2,2,3,2,3,4,2,2 %N A355034 a(n) is the least base b >= 2 where the sum of digits of n is a prime number. %C A355034 The sequence is well defined: %C A355034 - a(2) = 3, %C A355034 - for n >= 3, the expansion of n in base n-1 is "11", with sum of digits 2. %H A355034 Rémy Sigrist, <a href="/A355034/b355034.txt">Table of n, a(n) for n = 2..10000</a> %F A355034 a(n) = 2 iff n belongs to A052294. %F A355034 a(n) <= n-1 for any n >= 3. %e A355034 For n = 16: %e A355034 - we have the following expansions and sum of digits: %e A355034 b 16_b Sum of digits in base b %e A355034 - ------- ----------------------- %e A355034 2 "10000" 1 %e A355034 3 "121" 4 %e A355034 4 "100" 1 %e A355034 5 "31" 4 %e A355034 6 "24" 6 %e A355034 7 "22" 4 %e A355034 8 "20" 2 %e A355034 - so a(16) = 8. %o A355034 (PARI) a(n) = for (b=2, oo, if (isprime(sumdigits(n,b)), return (b))) %o A355034 (Python) %o A355034 from sympy import isprime %o A355034 from sympy.ntheory.digits import digits %o A355034 def a(n): %o A355034 b = 2 %o A355034 while not isprime(sum(digits(n, b)[1:])): b += 1 %o A355034 return b %o A355034 print([a(n) for n in range(2, 89)]) # _Michael S. Branicky_, Jun 16 2022 %Y A355034 Cf. A052294, A216789, A355035 (corresponding prime numbers). %K A355034 nonn,base %O A355034 2,1 %A A355034 _Rémy Sigrist_, Jun 16 2022