This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355035 #10 Jun 18 2022 07:43:24 %S A355035 2,2,2,2,2,3,2,2,2,3,2,3,3,3,2,2,2,3,2,3,3,5,2,3,3,3,3,3,2,5,2,2,2,3, %T A355035 2,3,3,3,2,3,3,5,3,3,7,5,2,3,3,5,3,7,2,5,3,3,7,5,5,5,5,3,13,2,2,3,2,3, %U A355035 3,7,2,3,3,5,3,7,3,5,2,3,3,3,3,3,5,5,3 %N A355035 Consider the least base b >= 2 where the sum of digits of n is a prime number; a(n) corresponds to this prime number. %H A355035 Rémy Sigrist, <a href="/A355035/b355035.txt">Table of n, a(n) for n = 2..10000</a> %F A355035 a(n) = A216789(n, A355034(n)). %e A355035 For n = 16: %e A355035 - we have the following expansions and sum of digits: %e A355035 b 16_b Sum of digits in base b %e A355035 - ------- ----------------------- %e A355035 2 "10000" 1 %e A355035 3 "121" 4 %e A355035 4 "100" 1 %e A355035 5 "31" 4 %e A355035 6 "24" 6 %e A355035 7 "22" 4 %e A355035 8 "20" 2 %e A355035 - so a(16) = 2. %o A355035 (PARI) a(n) = my (s); for (b=2, oo, if (isprime(s=sumdigits(n,b)), return (s))) %o A355035 (Python) %o A355035 from sympy import isprime %o A355035 from sympy.ntheory.digits import digits %o A355035 def s(n, b): return sum(digits(n, b)[1:]) %o A355035 def a(n): %o A355035 b = 2 %o A355035 while not isprime(s(n, b)): b += 1 %o A355035 return s(n, b) %o A355035 print([a(n) for n in range(2, 89)]) # _Michael S. Branicky_, Jun 16 2022 %Y A355035 Cf. A216789, A355034 (corresponding b's). %K A355035 nonn,base %O A355035 2,1 %A A355035 _Rémy Sigrist_, Jun 16 2022