cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355036 a(n) is the least number whose product of digits in primorial base equals n.

This page as a plain text file.
%I A355036 #10 Jun 18 2022 08:41:42
%S A355036 0,1,5,21,17,159,23,1509,29,111,161,25659,83,392949,1511,171,89,
%T A355036 8711259,113,184837209,167,1521,25661,5141378799,119,1209,392951,741,
%U A355036 1517,187854439329,173,6224078222919,149,25671,8711261,1629,203,274774574506989,184837211
%N A355036 a(n) is the least number whose product of digits in primorial base equals n.
%C A355036 All terms except a(0) = 0 are odd.
%C A355036 Each prime number sets a new record.
%H A355036 Rémy Sigrist, <a href="/A355036/b355036.txt">Table of n, a(n) for n = 0..2356</a>
%H A355036 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%F A355036 A355037(a(n)) = n.
%F A355036 a(A005867(n)) = A057588(n) for any n > 0.
%e A355036 The first terms, alongside their primorial base expansion, are:
%e A355036   n   a(n)       pr(a(n))
%e A355036   --  ---------  ------------------
%e A355036    0          0                   0
%e A355036    1          1                   1
%e A355036    2          5                 2_1
%e A355036    3         21               3_1_1
%e A355036    4         17               2_2_1
%e A355036    5        159             5_1_1_1
%e A355036    6         23               3_2_1
%e A355036    7       1509           7_1_1_1_1
%e A355036    8         29               4_2_1
%e A355036    9        111             3_3_1_1
%e A355036   10        161             5_1_2_1
%e A355036   11      25659        11_1_1_1_1_1
%e A355036   12         83             2_3_2_1
%e A355036   13     392949      13_1_1_1_1_1_1
%o A355036 (PARI) a(n) = { if (n==0, 0, my (v=0, f=1); forprime (r=2, oo, forstep (d=r-1, 1, -1, if (n%d==0, v+=f*d; n/=d; break;);); if (n==1, return (v), f*=r))) }
%Y A355036 Cf. A005867, A057588, A263130 (factorial base analog), A355037.
%K A355036 nonn,base
%O A355036 0,3
%A A355036 _Rémy Sigrist_, Jun 16 2022