This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355041 #18 Jul 24 2024 17:56:30 %S A355041 14,18,30,42,60,70,82,88,106,126,130,166,168,196,213,240,258,280,282, %T A355041 330 %N A355041 Numbers k such that A152763(2^k) < A152763(2^k-1). %C A355041 Note that Catalan(2^k-1) is odd and that Catalan(2^k)/Catalan(2^k-1) = 2 * (2^(k+1)-1)/(2^k+1). Suppose that (2^(k+1)-1)/(2^k+1) = Product_{i=1..r} (p_i)^(e_i), let r_i be the (p_i)-adic valuation of binomial(2*(2^k-1),2^k-1), then A152763(2^k)/A152763(2^k-1) = 2 * Product_{i=1..r} (e_i+r_i+1)/(e_i+1). %C A355041 Conjecture: there is no prime in this sequence. Among the primes p <= 257, the prime p for which A152763(2^p)/A152763(2^p-1) is the smallest is p = 193, where A152763(2^p)/A152763(2^p-1) = 143/140. %e A355041 14 is a term since A152763(2^14) = 4.457... * 10^721 < A152763(2^14-1) = 4.754... * 10^721. Note that Catalan(2^14)/Catalan(2^14-1) = 2 * 32767/16385, 32767/16385 = (7*31*151)/(5*29*113). We have v(N,5) = v(N,31) = v(N,113) = v(N,151) = 1, v(N,7) = 3, v(N,29) = 2 for N = binomial(2*(2^14-1),2^14-1), so A152763(2^14)/A152763(2^14-1) = 2 * ((3+1+1)/(3+1)) * ((1+1+1)/(1+1)) * ((1+1+1)/(1+1)) * ((1-1+1)/(1+1)) * ((2-1+1)/(2+1)) * ((1-1+1)/(1+1)) = 15/16 < 1. %e A355041 18 is a term since A152763(2^18) = 1.178... * 10^8888 < A152763(2^18-1) = 2.121... * 10^8888. Note that Catalan(2^18)/Catalan(2^18-1) = 2 * 524287/262145, 524287/262145 = 524287/(5*13*37*109). We have v(N,5) = 5, q(N,13) = 2, v(N,37) = v(N,109) = 1, v(N,524287) = 0 for N = binomial(2*(2^18-1),2^18-1), so A152763(2^18)/A152763(2^18-1) = 2 * ((5-1+1)/(5+1)) * ((2-1+1)/(2+1)) * ((1-1+1)/(1+1)) * ((1-1+1)/(1+1)) * ((0+1+1)/(0+1)) = 5/9 < 1. %e A355041 Values of A152763(2^k)/A152763(2^k-1) for known terms: %e A355041 k = 14: 15/16 %e A355041 k = 18: 5/9 %e A355041 k = 30: 9/11 %e A355041 k = 42: 432/455 %e A355041 k = 60: 64/81 %e A355041 k = 70: 104/105 %e A355041 k = 82: 160/243 %e A355041 k = 88: 16/21 %e A355041 k = 106: 38/45 %e A355041 k = 126: 2275/2673 %e A355041 k = 130: 3773/6400 %e A355041 k = 166: 216/287 %e A355041 k = 168: 27/35 %e A355041 k = 196: 605/897 %e A355041 k = 213: 1683/1840 %e A355041 k = 240: 320/343 %e A355041 k = 258: 732875/810432 %o A355041 (PARI) val(n,p) = (n - vecsum(digits(n,p)))/(p-1); %o A355041 q(n,p) = val(2*n,p) - 2*val(n,p); %o A355041 r(n) = my(list = factor((2^(n+1)-1)/(2^n+1)), w=#list~, rat=2, ex); for(i=1, w, ex=q(2^n-1,list[i,1]); rat*=(ex+list[i,2]+1)/(ex+1)); rat \\ A152763(2^n)/A152763(2^n-1) %o A355041 isA355041(n) = (r(n) < 1) %Y A355041 Cf. A152763, A000108, A038003 (the odd Catalan numbers). %K A355041 nonn,hard,more %O A355041 1,1 %A A355041 _Jianing Song_, Jun 16 2022 %E A355041 a(18)-a(20) from _Amiram Eldar_, Jul 24 2024