cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A355040 Expansion of the continued fraction 1 / (1-q / (1-q-q^2 / (1-q-q^2-q^3 / (1-q-q^2-q^3-q^4 / (...))))).

Original entry on oeis.org

1, 1, 2, 5, 13, 35, 96, 266, 742, 2079, 5843, 16457, 46423, 131099, 370527, 1047858, 2964698, 8390837, 23754234, 67260645, 190478213, 539484321, 1528094423, 4328632609, 12262352881, 34738763766, 98416624789, 278825903115, 789961599608, 2238129694407, 6341171821627, 17966261019890, 50903653156245
Offset: 0

Views

Author

Joerg Arndt, Jun 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[1/(1 - x/(1 - x + ContinuedFractionK[-x^k, 1 - x*(1 - x^k)/(1 - x), {k, 2, nmax}])), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 16 2022 *)
    A355040List[nmax_] := Module[{a, b, q},
    a = ContinuedFractionK[-q^k, (q^(k + 1) - 2 q + 1)/(q - 1), {k, 0, nmax}];
    b = Series[a, {q, 0, nmax}]; CoefficientList[b, q] ];
    A355040List[32] (* Peter Luschny, Jun 20 2022 *)
  • PARI
    N=44; q='q+O('q^N);
    f(n) = 1 - sum(k=1,n-1,q^k);
    s=1; forstep(j=N, 1, -1, s = q^j/s; s = f(j) - s ); s = 1/s;
    Vec(s)

Formula

a(n) ~ c * d^n, where d = 2.8333645039948803621658813720055524872119... and c = 0.1710130167563241590871776261530008679... - Vaclav Kotesovec, Jun 16 2022
a(n) = [q^n] K_{k>=0} -q^k / ((q^(k + 1) - 2*q + 1)/(q - 1)), where K is Gauss's notation for continued fractions. - Peter Luschny, Jun 20 2022

A355046 Expansion of the continued fraction 1 / (1-q / (1-q-q^3 / (1-q-q^3-q^5 / (1-q-q^3-q^5-q^7 / (...))))).

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 49, 115, 271, 640, 1514, 3585, 8494, 20134, 47740, 113221, 268557, 637077, 1511402, 3585843, 8507837, 20186405, 47896899, 113648058, 269662860, 639857869, 1518267397, 3602589217, 8548353709, 20283885193, 48130511518, 114206363723, 270994509775, 643029572029
Offset: 0

Views

Author

Joerg Arndt, Jun 16 2022

Keywords

Crossrefs

Programs

  • PARI
    N=44; q='q+O('q^N);
    f(n) = 1 - sum(k=1,n-1,q^(2*k-1));
    s=1; forstep(j=N, 1, -1, s = q^(2*j-1)/s; s = f(j) - s ); s = 1/s
    Vec(s)
Showing 1-2 of 2 results.