This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355051 #9 Aug 01 2022 14:23:41 %S A355051 6,67,412,1926,7856,29057,101105,335081,1072653,3337131,10154700, %T A355051 30330869,89226443,259092076,744095757,2116643127,5971171140, %U A355051 16722250081,46529076097,128722040503,354276958783,970546150818 %N A355051 Number of asymmetric orthoplex n-ominoes with cell centers determining n-3 space. %C A355051 Orthoplex polyominoes are connected sets of cells of regular tilings with Schläfli symbols {}, {4}, {3,4}, {3,3,4}, {3,3,3,4}, etc. These are tilings of regular orthoplexes projected on their circumspheres. Orthoplex polyominoes are equivalent to multidimensional polyominoes that do not extend more than two units along any axis, i.e., fit within a 2^d cube. An asymmetric polyomino has a symmetry group of order 1. %H A355051 Robert A. Russell, <a href="/A355051/b355051.txt">Table of n, a(n) for n = 7..100</a> %H A355051 Robert A. Russell, <a href="/A355051/a355051.pdf">Trunk Generating Functions</a> %F A355051 G.f.: (14 A(x)^6 + 103 A(x)^7 + 24 A(x)^8 - 6 A(x)^4 A(x^2) - 12 A(x)^5 A(x^2) - 24 A(x)^6 A(x^2) - 18 A(x)^2 A(x^2)^2 + 15 A(x)^3 A(x^2)^2 - 14 A(x^2)^3 + 8 A(x) A(x^2)^3 + 6 A(x)^2 A(x^2)^3 + 4 A(x^3)^2 - 4 A(x) A(x^3)^2 + 24 A(x^2) A(x^4) - 18 A(x) A(x^2) A(x^4) - 6 A(x)^2 A(x^2) A(x^4) - 4 A(x^6) + 4 A(x) A(x^6))/(24 (1 - A(x))) +A(x)^6 (5 A(x) + 16 A(x)^2 + 6 A(x)^3 - A(x^2) - 2 A(x) A(x^2))/(2 (1 - A(x))^2) - A(x^2) (A(x)^4 A(x^2) + 8 A(x) A(x^2)^2 + 2 A(x)^2 A(x^2)^2 + 10 A(x^2)^3 + 5 A(x) A(x^2)^3 - 2 A(x) A(x^4) - 3 A(x^2) A(x^4) - A(x) A(x^2) A(x^4))/(4 (1 - A(x^2))) + A(x)^7 (2 + 42 A(x) + 51 A(x)^2 + 24 A(x)^3 - 3 A(x^2))/(12 (1 - A(x))^3) - A(x)^2 A(x^2)^2 (2 A(x) + 5 A(x)^3 + 2 A(x^2) - A(x) A(x^2))/(4 (1 - A(x)) (1 - A(x^2))) + A(x) A(x^3)^2/(1 - A(x^3))/3 + A(x)^9 (17 + 8 A(x))/(8 (1 - A(x))^4) - A(x)^5 (1 + 4 A(x)) A(x^2)^2/(4 (1 - A(x))^2 (1 - A(x^2))) - A(x^2)^4 (8 + 17 A(x) + 16 A(x^2) + 8 A(x) A(x^2))/(8 (1 - A(x^2))^2) + A(x) (A(x^4)^2/(1 - A(x^4)))/4 + 3 A(x)^10/(8 (1 - A(x))^5) - A(x)^6 A(x^2)^2/(4 (1 - A(x))^3 (1 - A(x^2))) - A(x)^2 A(x^2)^4/(8 (1 - A(x)) (1 - A(x^2))^2) - 3 (1 + A(x)) A(x^2)^5/(4 (1 - A(x^2))^3) + 3 (1 + A(x)) A(x^2) A(x^4)^2/(4 (1 - A(x^2)) (1 - A(x^4))) where A(x) is the generating function for rooted identity trees with n nodes in A004111. %e A355051 a(7)=6 because there are 6 asymmetric heptominoes in 2^4 space. See trunks 1, 6, 8, 12, 27, and 28 in the linked Trunk Generating Functions. %t A355051 sa[n_, k_] := sa[n, k] = a[n+1-k, 1] + If[n < 2 k, 0, -sa[n-k, k]]; %t A355051 a[1, 1] := 1; a[n_, 1] := a[n, 1] = Sum[a[i, 1] sa[n-1, i] i, {i, 1, n-1}]/(n-1); %t A355051 a[n_, k_] := a[n, k] = Sum[a[i, 1] a[n-i, k-1], {i, 1, n-1}]; %t A355051 nmax = 30; A[x_] := Sum[a[i, 1] x^i, {i, 0, nmax}] %t A355051 Drop[CoefficientList[Series[(14 A[x]^6 + 103 A[x]^7 + 24 A[x]^8 - 6 A[x]^4 A[x^2] - 12 A[x]^5 A[x^2] - 24 A[x]^6 A[x^2] - 18 A[x]^2 A[x^2]^2 + 15 A[x]^3 A[x^2]^2 - 14 A[x^2]^3 + 8 A[x] A[x^2]^3 + 6 A[x]^2 A[x^2]^3 + 4 A[x^3]^2 - 4 A[x] A[x^3]^2 + 24 A[x^2] A[x^4] - 18 A[x] A[x^2] A[x^4] - 6 A[x]^2 A[x^2] A[x^4] - 4 A[x^6] + 4 A[x] A[x^6])/(24 (1-A[x])) + A[x]^6 (5 A[x] + 16 A[x]^2 + 6 A[x]^3 - A[x^2] - 2 A[x] A[x^2])/(2 (1-A[x])^2) - A[x^2] (A[x]^4 A[x^2] + 8 A[x] A[x^2]^2 + 2 A[x]^2 A[x^2]^2 + 10 A[x^2]^3 + 5 A[x] A[x^2]^3 - 2 A[x] A[x^4] - 3 A[x^2] A[x^4] - A[x] A[x^2] A[x^4])/(4 (1-A[x^2])) + A[x]^7 (2 + 42 A[x] + 51 A[x]^2 + 24 A[x]^3 - 3 A[x^2])/(12 (1-A[x])^3) - A[x]^2 A[x^2]^2 (2 A[x] + 5 A[x]^3 + 2 A[x^2] - A[x] A[x^2])/(4 (1-A[x]) (1-A[x^2])) + A[x] A[x^3]^2/(1-A[x^3])/3 + A[x]^9 (17 + 8 A[x])/(8 (1-A[x])^4) - A[x]^5 (1 + 4 A[x]) A[x^2]^2/(4 (1-A[x])^2 (1-A[x^2])) - A[x^2]^4 (8 + 17 A[x] + 16 A[x^2] + 8 A[x] A[x^2])/(8 (1-A[x^2])^2) + A[x] (A[x^4]^2/(1-A[x^4]))/4 + 3 A[x]^10/(8 (1-A[x])^5) - A[x]^6 A[x^2]^2/(4 (1-A[x])^3 (1-A[x^2])) - A[x]^2 A[x^2]^4/(8 (1-A[x]) (1-A[x^2])^2) - 3 (1 + A[x]) A[x^2]^5/(4 (1-A[x^2])^3) +3 (1 + A[x]) A[x^2] A[x^4]^2/(4 (1-A[x^2]) (1-A[x^4])), {x,0,nmax}], x], 7] %Y A355051 Cf. A355047 (oriented), A355048 (unoriented), A355049 (chiral) A355050 (achiral), A004111 (rooted asymmetric). %Y A355051 Other dimensions: A036369 (n-2), A000220 (n-1), A355056 (multidimensional). %K A355051 nonn,easy %O A355051 7,1 %A A355051 _Robert A. Russell_, Jun 16 2022