cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355057 a(n) = product of prohibited prime factors of A090252(n).

Original entry on oeis.org

1, 1, 2, 6, 15, 30, 70, 210, 462, 6006, 51051, 102102, 277134, 6374082, 10623470, 223092870, 588153930, 18232771830, 51893273670, 2127624220470, 5381637734130, 252936973504110, 6702829797858915, 13405659595717830, 41628100849860630, 2539314151841498430, 7397132529277408470
Offset: 1

Views

Author

Michael De Vlieger, Jun 16 2022

Keywords

Comments

Let s(n) = A090252(n) and let K(n) = A007947(n) = squarefree kernel of n.
Prime p | s(n) implies p does not divide s(n+j), 1 <= j <= n.
Therefore a(n) is the product of primes p that cannot divide s(n).
a(n) = product of distinct primes that divide a(j) for floor((n+1)/2) <= j <= n-1. - N. J. A. Sloane, Jun 17 2022

Examples

			a(1) = 1;
a(2) = 1 since s(1) = 1, and (2-1)/2 is not an integer;
a(3) = a(2) * K(s(2)) / K(s((3-1)/2)) = 1 * 2 / 1 = 2;
a(4) = a(3) * K(s(3)) = 2 * 3 = 6;
a(5) = a(4) * K(s(4)) / K(s((5-1)/2)) = 6 * 5 / 2 = 15;
a(6) = a(5) * K(s(5)) = 15 * 2 = 30;
a(7) = a(6) * K(s(6)) / K(s((7-1)/2)) = 30 * 7 / 3 = 70;
etc.
		

Crossrefs

See A354758 for another version.
A354765 is a binary encoding.

Programs

  • Maple
    # To get first M terms, from N. J. A. Sloane, Jun 18 2022
    with(numtheory);
    M:=20; ans:=[1,1,2];
    for i from 4 to M do
    S:={}; j1:=floor((i+1)/2); j2:=i-1;
      for j from j1 to j2 do S:={op(S), op(factorset(b252[j]))} od:
    t2 := product(S[k], k = 1..nops(S));
    ans:=[op(ans),t2];
    od:
    ans;
  • Mathematica
    Block[{s = Import["https://oeis.org/A090252/b090252.txt", "Data"][[1 ;; 120, -1]], m = 1}, Reap[Do[m *= Times @@ FactorInteger[s[[If[# == 0, 1, #] &[i - 1]]]][[All, 1]]; If[IntegerQ[#] && # > 0, m /= Times @@ FactorInteger[s[[#]]][[All, 1]]] &[(i - 1)/2]; Sow[m], {i, Length[s]}] ][[-1, -1]] ]
  • Python
    from math import prod, lcm, gcd
    from itertools import count, islice
    from collections import deque
    from sympy import primefactors
    def A355057_gen(): # generator of terms
        aset, aqueue, c, b, f = {1}, deque([1]), 2, 1, True
        yield 1
        while True:
            for m in count(c):
                if m not in aset and gcd(m,b) == 1:
                    yield prod(primefactors(b))
                    aset.add(m)
                    aqueue.append(m)
                    if f: aqueue.popleft()
                    b = lcm(*aqueue)
                    f = not f
                    while c in aset:
                        c += 1
                    break
    A355057_list = list(islice(A355057_gen(),20)) # Chai Wah Wu, Jun 18 2022

Formula

a(n) = a(n-1) * K(s(n-1)) / K(s((n-1)/2)), where the last operation is only carried out iff (n-1)/2 is an integer.