A355057 a(n) = product of prohibited prime factors of A090252(n).
1, 1, 2, 6, 15, 30, 70, 210, 462, 6006, 51051, 102102, 277134, 6374082, 10623470, 223092870, 588153930, 18232771830, 51893273670, 2127624220470, 5381637734130, 252936973504110, 6702829797858915, 13405659595717830, 41628100849860630, 2539314151841498430, 7397132529277408470
Offset: 1
Keywords
Examples
a(1) = 1; a(2) = 1 since s(1) = 1, and (2-1)/2 is not an integer; a(3) = a(2) * K(s(2)) / K(s((3-1)/2)) = 1 * 2 / 1 = 2; a(4) = a(3) * K(s(3)) = 2 * 3 = 6; a(5) = a(4) * K(s(4)) / K(s((5-1)/2)) = 6 * 5 / 2 = 15; a(6) = a(5) * K(s(5)) = 15 * 2 = 30; a(7) = a(6) * K(s(6)) / K(s((7-1)/2)) = 30 * 7 / 3 = 70; etc.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..500
- Michael De Vlieger, Annotated chart of prime factors of a(n), n = 1..64, plotting prime p | a(n) at (n, pi(p)) in black, and prime q | s(n) at (n, pi(q)) in red.
- Michael De Vlieger, Plot of prime p | a(n), n = 1..2^12, plotting p | a(n) at (n, pi(p)) in black.
Crossrefs
Programs
-
Maple
# To get first M terms, from N. J. A. Sloane, Jun 18 2022 with(numtheory); M:=20; ans:=[1,1,2]; for i from 4 to M do S:={}; j1:=floor((i+1)/2); j2:=i-1; for j from j1 to j2 do S:={op(S), op(factorset(b252[j]))} od: t2 := product(S[k], k = 1..nops(S)); ans:=[op(ans),t2]; od: ans;
-
Mathematica
Block[{s = Import["https://oeis.org/A090252/b090252.txt", "Data"][[1 ;; 120, -1]], m = 1}, Reap[Do[m *= Times @@ FactorInteger[s[[If[# == 0, 1, #] &[i - 1]]]][[All, 1]]; If[IntegerQ[#] && # > 0, m /= Times @@ FactorInteger[s[[#]]][[All, 1]]] &[(i - 1)/2]; Sow[m], {i, Length[s]}] ][[-1, -1]] ]
-
Python
from math import prod, lcm, gcd from itertools import count, islice from collections import deque from sympy import primefactors def A355057_gen(): # generator of terms aset, aqueue, c, b, f = {1}, deque([1]), 2, 1, True yield 1 while True: for m in count(c): if m not in aset and gcd(m,b) == 1: yield prod(primefactors(b)) aset.add(m) aqueue.append(m) if f: aqueue.popleft() b = lcm(*aqueue) f = not f while c in aset: c += 1 break A355057_list = list(islice(A355057_gen(),20)) # Chai Wah Wu, Jun 18 2022
Formula
a(n) = a(n-1) * K(s(n-1)) / K(s((n-1)/2)), where the last operation is only carried out iff (n-1)/2 is an integer.
Comments