cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355074 G.f.: Sum_{n>=0} a(n)*x^n/(n!*4^(n*(n-1)/2)) = exp( Sum_{n>=1} x^n/(n!*4^(n*(n-1)/2)) ).

This page as a plain text file.
%I A355074 #13 Jun 18 2022 14:00:13
%S A355074 1,1,5,113,11265,4859137,8966576129,70171067707393,
%T A355074 2313986342570295297,319893682564775147012097,
%U A355074 184627527352223449064321581057,443344010564094761887045848673550337,4416539344305075410912848824562640662560769
%N A355074 G.f.: Sum_{n>=0} a(n)*x^n/(n!*4^(n*(n-1)/2)) = exp( Sum_{n>=1} x^n/(n!*4^(n*(n-1)/2)) ).
%o A355074 (PARI) a(n) = n!*4^(n*(n-1)/2)*polcoef(exp(sum(k=1, n, x^k/(k!*4^(k*(k-1)/2)))+x*O(x^n)), n);
%o A355074 (PARI) T(n, k) = if(k==1, 1, sum(j=1, n-1, 4^(j*(n-j))*binomial(n-1, j)*T(j, k-1)));
%o A355074 a(n) = if(n==0, 1, sum(k=1, n, T(n, k)));
%Y A355074 Cf. A000110, A240936, A355073.
%Y A355074 Cf. A355071, A355082.
%K A355074 nonn
%O A355074 0,3
%A A355074 _Seiichi Manyama_, Jun 18 2022