This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355076 #11 Jun 19 2022 18:42:56 %S A355076 1,1,2,2,6,3,1,1,4,12,60,60,12,4,2,2,10,20,140,420,840,840,840,840, %T A355076 840,840,420,140,20,5,1,1,6,30,90,180,1980,13860,13860,13860,13860, %U A355076 27720,360360,72072,72072,72072,8008,8008,72072,72072,72072,360360,27720 %N A355076 a(n) is the denominator of Sum_{k = 0..n} fusc(k)/fusc(k+1) (where fusc is Stern's diatomic series A002487). %H A355076 Rémy Sigrist, <a href="/A355076/b355076.txt">Table of n, a(n) for n = 0..8192</a> %H A355076 <a href="/index/St#Stern">Index entries for sequences related to Stern's sequences</a> %F A355076 Conjecture: a(n) = 1 for n of the form 2*4^k - 1 or 2*4^k - 2 for some k >= 0. %e A355076 For n = 4: %e A355076 - the first 5 terms of A002487 are: 0, 1, 1, 2, 1, 3, %e A355076 - 0/1 + 1/1 + 1/2 + 2/1 + 1/3 = 23/6, %e A355076 - so a(4) = 6. %o A355076 (PARI) fusc(n)=local(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); b \\ after Charles R Greathouse IV in A002487 %o A355076 { s = 0; for (n=0, 52, print1 (denominator(s+=fusc(n)/fusc(n+1))", ")) } %o A355076 (Python) %o A355076 from fractions import Fraction %o A355076 from functools import reduce %o A355076 def A355076(n): return sum(Fraction(reduce(lambda x,y:(x[0],x[0]+x[1]) if int(y) else (x[0]+x[1],x[1]),bin(k)[-1:1:-1],(1,0))[1],reduce(lambda x,y:(x[0],x[0]+x[1]) if int(y) else (x[0]+x[1],x[1]),bin(k+1)[-1:1:-1],(1,0))[1]) for k in range(n+1)).denominator # _Chai Wah Wu_, Jun 19 2022 %Y A355076 Cf. A002487, A174868, A355075 (corresponding numerators). %K A355076 nonn,look,frac %O A355076 0,3 %A A355076 _Rémy Sigrist_, Jun 18 2022