This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355090 #13 Jun 20 2022 04:27:16 %S A355090 0,1,0,3,2,0,7,1,4,0,15,5,6,8,0,31,3,1,2,16,0,63,11,9,14,12,32,0,127, %T A355090 7,13,1,10,4,64,0,255,23,3,17,30,2,24,128,0,511,15,19,5,1,6,28,8,256, %U A355090 0,1023,47,27,29,33,62,18,20,48,512,0,2047,31,7,3,25,1,22,2,4,16,1024,0 %N A355090 Square array A(n, k), n >= 0, k > 0, read by antidiagonals upwards; A(n, k) is the unique m such that n/k = fusc(m)/fusc(m+1) (where fusc is Stern's diatomic series A002487). %C A355090 The binary expansion of A(n, k) encodes the position of n/k (> 0) in the Calkin-Wilf tree. %H A355090 Rémy Sigrist, <a href="/A355090/b355090.txt">Table of n, a(n) for n = 0..10152</a> %H A355090 Wikipedia, <a href="https://en.wikipedia.org/wiki/Calkin%E2%80%93Wilf_tree">Calkin-Wilf tree</a> %H A355090 <a href="/index/St#Stern">Index entries for sequences related to Stern's sequences</a> %F A355090 A(m*n, m*k) = A(n, k) for any m > 0. %F A355090 A(k, n) = A054429(A(n, k)) for any n, k > 0. %F A355090 A(0, k) = 0. %F A355090 A(1, k) = 2^(k-1). %F A355090 A(n, 1) = 2^n - 1. %F A355090 A(n, n+1) = A000918(n+1). %F A355090 A(A002487(n), A002487(n+1)) = n. %e A355090 Square array A(n, k) begins: %e A355090 n\k| 1 2 3 4 5 6 7 8 9 10 11 12 %e A355090 ---+----------------------------------------------------------------- %e A355090 0| 0 0 0 0 0 0 0 0 0 0 0 0 %e A355090 1| 1 2 4 8 16 32 64 128 256 512 1024 2048 %e A355090 2| 3 1 6 2 12 4 24 8 48 16 96 32 %e A355090 3| 7 5 1 14 10 2 28 20 4 56 40 8 %e A355090 4| 15 3 9 1 30 6 18 2 60 12 36 4 %e A355090 5| 31 11 13 17 1 62 22 26 34 2 124 44 %e A355090 6| 63 7 3 5 33 1 126 14 6 10 66 2 %e A355090 7| 127 23 19 29 25 65 1 254 46 38 58 50 %e A355090 8| 255 15 27 3 21 9 129 1 510 30 54 6 %e A355090 9| 511 47 7 35 61 5 49 257 1 1022 94 14 %e A355090 10| 1023 31 39 11 3 13 57 17 513 1 2046 62 %e A355090 11| 2047 95 55 59 67 125 37 41 97 1025 1 4094 %e A355090 12| 4095 63 15 7 51 3 45 5 9 33 2049 1 %o A355090 (PARI) A(x,y) = { if (x==0, 0, my (v=0,t=1,a=0,b=1,c=1,d=0); while (1, my (m=a+c, n=b+d); if (x*n==y*m, return (t+v), x*n<y*m, [c,d]=[m,n], [v,a,b]=[v+t,m,n]); t*=2)) } %Y A355090 Cf. A000918, A002487, A054429. %K A355090 nonn,tabl %O A355090 0,4 %A A355090 _Rémy Sigrist_, Jun 18 2022