This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355150 #114 Dec 10 2023 09:28:38 %S A355150 0,1,1,1,1,2,1,1,1,2,1,1,1,2,1,2,1,1,1,2,1,2,1,1,1,2,1,1,1,2,1,2,1,2, %T A355150 1,1,1,2,1,1,1,2,1,2,1,2,1,1,1,2,1,1,1,2,1,2,1,1,1,2,1,2,1,1,1,2,1,2, %U A355150 1,2,1,1,1,2,1,1,1,2,1,2,1,1,1,2,1,2,1,1,1,2,1 %N A355150 The Hamming weight of A354169, a(n) = A000120(A354169(n)). %C A355150 All the following conjectures are now known to be true. See De Vlieger et al. (2022). - _N. J. A. Sloane_, Aug 29 2022 %C A355150 Conjecture: It appears that this sequence may be computed by a fast algorithm: %C A355150 We begin with an initial sequence 0,1,1,1,1,2. Let n be the index of the last element added. Then extend by the rules: %C A355150 If a(n) = 2, a((n-3)/2) = 1, and a((n-1)/2) = 2 extend this sequence by 1,2. %C A355150 If a(n) = 2, a((n-3)/2) = 2, a((n-1)/2) = 1, and a(n-2) = 1, extend this sequence by 1,2. %C A355150 In all other cases extend this sequence by 1,1,1,2. %C A355150 This conjecture was verified for n = 0..2^16 against the b-file provided by _Michael De Vlieger_. - _Thomas Scheuerle_, Jul 14 2022 %C A355150 [Typos corrected by _N. J. A. Sloane_, Jul 10 2022 at the suggestion of _Michel Dekking_.] %C A355150 From _Michel Dekking_, Jul 12 2022: (Start) %C A355150 Conjecture: It appears that this sequence is almost a periodic sequence, with period 6. Let x be the sequence defined below. %C A355150 If n > 25, n == 2 (mod 6) is not an element of x then (written as words) %C A355150 a(n)a(n+1)...a(n+5) = 111212. %C A355150 If n > 25, n == 2 (mod 6) is an element of x then %C A355150 a(n)a(n+1)...a(n+5) = 121112. %C A355150 The sequence x = {32, 44, 68, 92, 140, 188, 284, ...} is a sparse sequence defined via the sequence A007283, given by A007283(n)=3*2^n, which has also been encountered in A354169. In fact, x(1) = 32, and %C A355150 x(2n+2) - x(2n+1) = 3*2^(n+2) for n=0,1,2,.... %C A355150 x(2n+1) - x(2n) = 3*2^(n+2) for n=1,2,.... (End) %C A355150 From _Michel Dekking_, Jul 23 2022: (Start) %C A355150 Extending the sequence x to the right with the four numbers 5,8,14,21 we obtain sequence A354789. %C A355150 So the sparse positions are given by 9*2^k - 4 for k even, and by 12*2^k - 4 for k odd, for k = 2,3,... (End) %H A355150 Rémy Sigrist, <a href="/A355150/b355150.txt">Table of n, a(n) for n = 0..20000</a> (first 4941 terms from N. J. A. Sloane) %H A355150 Michael De Vlieger, Thomas Scheuerle, Rémy Sigrist, N. J. A. Sloane, and Walter Trump, <a href="http://arxiv.org/abs/2209.04108">The Binary Two-Up Sequence</a>, arXiv:2209.04108 [math.CO], Sep 11 2022. %H A355150 Rémy Sigrist, <a href="/A355150/a355150.txt">C++ program</a> %H A355150 N. J. A. Sloane, <a href="https://njas.blog/2022/06/03/the-two-up-sequence-a090252/">Blog post about the Two-Up sequence</a>, June 13 2022. Mentions A354169. %F A355150 a(A354767(n)) = 1. %F A355150 a(A354798(n+1)) != 2. %o A355150 (C++) See Links section. %o A355150 (MATLAB) %o A355150 function a = A355150( max_n ) % Note: a(0) is omitted here because %o A355150 % a(1) will be a(1) in the sequence. %o A355150 a = [1 1 1 1 2]; %o A355150 m = length(a); %o A355150 while length(a) < max_n %o A355150 if (((a((m-3)/2) == 2)&&(a((m-1)/2) == 1)&&(a(m-2) == 1)) ... %o A355150 ||((a((m-3)/2) == 1)&&(a((m-1)/2) == 2))) %o A355150 a(m+1:m+2) = [1 2]; %o A355150 m = m+2; %o A355150 else %o A355150 a(m+1:m+4) = [1 1 1 2]; %o A355150 m = m+4; %o A355150 end %o A355150 end %o A355150 end %Y A355150 Cf. A000120, A354169, A354767, A354798. %K A355150 nonn %O A355150 0,6 %A A355150 _Thomas Scheuerle_, Jun 21 2022 %E A355150 Edited by _N. J. A. Sloane_, Jul 10 2022