This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355160 #19 Aug 03 2022 18:57:08 %S A355160 2,6,7,8,10,12,13,19,24,26,31,33,39,40,41,43,44,45,46,48,50,52,53,54, %T A355160 55,58,60,68,70,72,73,74,75,76,77,78,80,82,84,85,86,88,89,90,93,95,96, %U A355160 104,105,107,109,110,117,118,120,122,124,125,132,133,135,137 %N A355160 Numbers k such that (fractional part of k^(3/2)) > 1/2. %C A355160 For each positive integer K there is a greatest integer h such that h/K < sqrt(K); a(n) is the n-th number h such that (h+1)/K is closer to sqrt(K) than h/K is. %t A355160 Select[Range[300], N[FractionalPart[#^(3/2)]] < 1/2 &] (* A355159 *) %t A355160 Select[Range[300], N[FractionalPart[#^(3/2)]] > 1/2 &] (* A355160 *) %o A355160 (PARI) isok(k) = frac(k^(3/2)) > 1/2; \\ _Michel Marcus_, Jul 11 2022 %o A355160 (Python) %o A355160 from math import isqrt %o A355160 from itertools import count, islice %o A355160 def A355160_gen(startvalue=0): # generator of terms >= startvalue %o A355160 return filter(lambda n:int(((r:=n**3)-(m:=isqrt(r))*(m+1))<<2>1),count(max(startvalue,0))) %o A355160 A355160_list = list(islice(A355160_gen(),30)) # _Chai Wah Wu_, Aug 03 2022 %Y A355160 Cf. A000093, A355159 (complement). %K A355160 nonn,easy %O A355160 1,1 %A A355160 _Clark Kimberling_, Jun 23 2022