This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355161 #38 Aug 23 2022 09:41:21 %S A355161 29,37,53,59,67,79,89,127,137,149,157,163,173,179,191,211,223,239,251, %T A355161 257,263,269,277,293,307,331,337,347,359,373,379,389,419,431,439,449, %U A355161 479,509,521,541,547,557,563,569,577,587,593,599,607,613 %N A355161 Primes p such that p - prevprime(p) is not a power of 2. %C A355161 A130796(n) is prevprime(p). %C A355161 A031925 and A031931 are subsequences, as 6 and 12 are not powers of 2. %F A355161 a(n) = A151800(A130796(n)). %t A355161 Select[Prime[Range[2, 120]], (d = # - NextPrime[#, -1]) != 2^IntegerExponent[d, 2] &] (* _Amiram Eldar_, Jun 22 2022 *) %o A355161 (PARI) isp2(n) = my(p); (n==1) || (isprimepower(n, &p) && (p==2)); \\ A000079 %o A355161 isok(p) = isprime(p) && !isp2(p-precprime(p-1)) \\ _Michel Marcus_, Jun 22 2022 %o A355161 (Python) %o A355161 from itertools import islice, count %o A355161 from sympy import prime, prevprime %o A355161 def A355161_gen(): # generator of terms %o A355161 return filter(lambda n:((~(m:=n-prevprime(n))+1)&m)-m, (prime(n) for n in count(2))) %o A355161 A355161_list = list(islice(A355161_gen(),30)) # _Chai Wah Wu_, Aug 23 2022 %Y A355161 Cf. A000079, A031925, A031931, A130796, A151800. %K A355161 nonn %O A355161 1,1 %A A355161 _Reed Michael Upson_, Jun 21 2022