A355166 Lexicographically earliest sequence of distinct positive integers such for any n > 0, n and a(n) are coprime and have no common 1-bits in their binary expansions.
2, 1, 4, 3, 8, 17, 16, 5, 20, 21, 32, 19, 18, 33, 64, 7, 6, 13, 12, 9, 10, 41, 40, 35, 34, 37, 68, 65, 66, 97, 96, 11, 14, 25, 24, 67, 26, 73, 80, 23, 22, 85, 84, 81, 82, 129, 128, 71, 72, 69, 76, 75, 74, 137, 136, 131, 70, 133, 132, 193, 130, 257, 256, 15, 28
Offset: 1
Examples
The first terms, alongside binary expansions and distinct prime factors, are: n a(n) bin(n) bin(a(n)) dpf(n) dpf(a(n)) -- ---- ------ --------- ------ --------- 1 2 1 10 {} {2} 2 1 10 1 {2} {} 3 4 11 100 {3} {2} 4 3 100 11 {2} {3} 5 8 101 1000 {5} {2} 6 17 110 10001 {2, 3} {17} 7 16 111 10000 {7} {2} 8 5 1000 101 {2} {5} 9 20 1001 10100 {3} {2, 5} 10 21 1010 10101 {2, 5} {3, 7}
Links
Programs
-
PARI
See Links section.
-
Python
from math import gcd from itertools import count, islice def agen(): # generator of terms aset, mink = set(), 1 for n in count(1): an = mink while an in aset or n&an or gcd(n, an)!=1: an += 1 aset.add(an); yield an while mink in aset: mink += 1 print(list(islice(agen(), 65))) # Michael S. Branicky, Jun 22 2022
Comments