This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355173 #36 Mar 22 2025 20:42:54 %S A355173 1,0,1,0,1,2,0,1,3,5,0,1,4,9,14,0,1,5,14,28,42,0,1,6,20,48,90,132,0,1, %T A355173 7,27,75,165,297,429,0,1,8,35,110,275,572,1001,1430,0,1,9,44,154,429, %U A355173 1001,2002,3432,4862,0,1,10,54,208,637,1638,3640,7072,11934,16796 %N A355173 The Fuss-Catalan triangle of order 1, read by rows. Related to binary trees. %C A355173 The Fuss-Catalan triangle of order m is a regular, (0, 0)-based table recursively defined as follows: Set row(0) = [1] and row(1) = [0, 1]. Now assume row(n-1) already constructed and duplicate the last element of row(n-1). Next apply the cumulative sum m times to this list to get row(n). Here m = 1. (See the Python program for a reference implementation.) %C A355173 This definition also includes the classical Fuss-Catalan numbers, since T(n, n) = A000108(n), or row 2 in A355262. For m = 2 see A355172 and for m = 3 A355174. More generally, for n >= 1 all Fuss-Catalan sequences (A355262(n, k), k >= 0) are the main diagonals of the Fuss-Catalan triangles of order n - 1. %F A355173 The general formula for the Fuss-Catalan triangles is, for m >= 0 and 0 <= k <= n: %F A355173 FCT(n, k, m) = (m*(n - k) + m + 1)*(m*n + k - 1)!/((m*n + 1)!*(k - 1)!) for k > 0 and FCT(n, 0, m) = 0^n. The case considered here is T(n, k) = FCT(n, k, 1). %F A355173 T(n, k) = (n - k + 2)*(n + k - 1)!/((n + 1)!*(k - 1)!) for k > 0; T(n, 0) = 0^n. %F A355173 The g.f. of row n of the FC-triangle of order m is 0^n + (x - (m + 1)*x^2) / (1 - x)^(m*n + 2), thus: %F A355173 T(n, k) = [x^k] (0^n + (x - 2*x^2)/(1 - x)^(n + 2)). %e A355173 Table T(n, k) begins: %e A355173 [0] [1] %e A355173 [1] [0, 1] %e A355173 [2] [0, 1, 2] %e A355173 [3] [0, 1, 3, 5] %e A355173 [4] [0, 1, 4, 9, 14] %e A355173 [5] [0, 1, 5, 14, 28, 42] %e A355173 [6] [0, 1, 6, 20, 48, 90, 132] %e A355173 [7] [0, 1, 7, 27, 75, 165, 297, 429] %e A355173 [8] [0, 1, 8, 35, 110, 275, 572, 1001, 1430] %e A355173 [9] [0, 1, 9, 44, 154, 429, 1001, 2002, 3432, 4862] %e A355173 Seen as an array reading the diagonals starting from the main diagonal: %e A355173 [0] 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, ... A000108 %e A355173 [1] 0, 1, 3, 9, 28, 90, 297, 1001, 3432, 11934, 41990, ... A000245 %e A355173 [2] 0, 1, 4, 14, 48, 165, 572, 2002, 7072, 25194, 90440, ... A099376 %e A355173 [3] 0, 1, 5, 20, 75, 275, 1001, 3640, 13260, 48450, 177650, ... A115144 %e A355173 [4] 0, 1, 6, 27, 110, 429, 1638, 6188, 23256, 87210, 326876, ... A115145 %e A355173 [5] 0, 1, 7, 35, 154, 637, 2548, 9996, 38760, 149226, 572033, ... A000588 %e A355173 [6] 0, 1, 8, 44, 208, 910, 3808, 15504, 62016, 245157, 961400, ... A115147 %e A355173 [7] 0, 1, 9, 54, 273, 1260, 5508, 23256, 95931, 389367, 1562275, ... A115148 %o A355173 (Python) %o A355173 from functools import cache %o A355173 from itertools import accumulate %o A355173 @cache %o A355173 def Trow(n: int) -> list[int]: %o A355173 if n == 0: return [1] %o A355173 if n == 1: return [0, 1] %o A355173 row = Trow(n - 1) + [Trow(n - 1)[n - 1]] %o A355173 return list(accumulate(row)) %o A355173 for n in range(11): print(Trow(n)) %Y A355173 A000108 (main diagonal), A000245 (subdiagonal), A002057 (diagonal 2), A000344 (diagonal 3), A000027 (column 2), A000096 (column 3), A071724 (row sums), A000958 (alternating row sums), A262394 (main diagonal of array). %Y A355173 Variants: A009766 (main variant), A030237, A130020. %Y A355173 Cf. A123110 (triangle of order 0), A355172 (triangle of order 2), A355174 (triangle of order 3), A355262 (Fuss-Catalan array). %Y A355173 Cf. A115144, A115145, A000588, A115147, A115148. %K A355173 nonn,tabl %O A355173 0,6 %A A355173 _Peter Luschny_, Jun 25 2022